Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

Intratumoral CD40 activation and checkpoint blockade induces T cell-mediated eradication of melanoma in the brain.

Singh M, Vianden C, Cantwell MJ, Dai Z, Xiao Z, Sharma M, Khong H, Jaiswal AR, Faak F, Hailemichael Y, Janssen LME, Bharadwaj U, Curran MA, Diab A, Bassett RL, Tweardy DJ, Hwu P, Overwijk WW.

Nat Commun. 2017 Nov 13;8(1):1447. doi: 10.1038/s41467-017-01572-7.

2.

Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8+ T cell trafficking.

Taggart D, Andreou T, Scott KJ, Williams J, Rippaus N, Brownlie RJ, Ilett EJ, Salmond RJ, Melcher A, Lorger M.

Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1540-E1549. doi: 10.1073/pnas.1714089115. Epub 2018 Jan 31.

3.

Interference of CD40L-mediated tumor immunotherapy by oncolytic vesicular stomatitis virus.

Galivo F, Diaz RM, Thanarajasingam U, Jevremovic D, Wongthida P, Thompson J, Kottke T, Barber GN, Melcher A, Vile RG.

Hum Gene Ther. 2010 Apr;21(4):439-50. doi: 10.1089/hum.2009.143.

4.

CD40 cross-linking bypasses the absolute requirement for CD4 T cells during immunization with melanoma antigen gene-modified dendritic cells.

Ribas A, Butterfield LH, Amarnani SN, Dissette VB, Kim D, Meng WS, Miranda GA, Wang HJ, McBride WH, Glaspy JA, Economou JS.

Cancer Res. 2001 Dec 15;61(24):8787-93.

5.
6.

A Novel Murine GITR Ligand Fusion Protein Induces Antitumor Activity as a Monotherapy That Is Further Enhanced in Combination with an OX40 Agonist.

Leyland R, Watkins A, Mulgrew KA, Holoweckyj N, Bamber L, Tigue NJ, Offer E, Andrews J, Yan L, Mullins S, Oberst MD, Coates Ulrichsen J, Leinster DA, McGlinchey K, Young L, Morrow M, Hammond SA, Mallinder P, Herath A, Leow CC, Wilkinson RW, Stewart R.

Clin Cancer Res. 2017 Jul 1;23(13):3416-3427. doi: 10.1158/1078-0432.CCR-16-2000. Epub 2017 Jan 9.

7.

Checkpoint blockade immunotherapy enhances the frequency and effector function of murine tumor-infiltrating T cells but does not alter TCRβ diversity.

Kuehm LM, Wolf K, Zahour J, DiPaolo RJ, Teague RM.

Cancer Immunol Immunother. 2019 Jul;68(7):1095-1106. doi: 10.1007/s00262-019-02346-4. Epub 2019 May 18.

PMID:
31104075
8.

Intratumoral injection of Ad-ISF35 (Chimeric CD154) breaks tolerance and induces lymphoma tumor regression.

Urquiza M, Melo-Cardenas J, Aguillon R, Kipps TJ, Castro JE.

Hum Gene Ther. 2015 Jan;26(1):14-25. doi: 10.1089/hum.2014.015.

9.

Effective Combination of Innate and Adaptive Immunotherapeutic Approaches in a Mouse Melanoma Model.

Rakhmilevich AL, Felder M, Lever L, Slowinski J, Rasmussen K, Hoefges A, Van De Voort TJ, Loibner H, Korman AJ, Gillies SD, Sondel PM.

J Immunol. 2017 Feb 15;198(4):1575-1584. doi: 10.4049/jimmunol.1601255. Epub 2017 Jan 6.

10.

Intratumoral STING Activation with T-cell Checkpoint Modulation Generates Systemic Antitumor Immunity.

Ager CR, Reilley MJ, Nicholas C, Bartkowiak T, Jaiswal AR, Curran MA.

Cancer Immunol Res. 2017 Aug;5(8):676-684. doi: 10.1158/2326-6066.CIR-17-0049. Epub 2017 Jul 3.

11.

Induced PD-L1 expression mediates acquired resistance to agonistic anti-CD40 treatment.

Zippelius A, Schreiner J, Herzig P, Müller P.

Cancer Immunol Res. 2015 Mar;3(3):236-44. doi: 10.1158/2326-6066.CIR-14-0226. Epub 2015 Jan 26.

12.
13.

Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma.

Pilon-Thomas S, Mackay A, Vohra N, Mulé JJ.

J Immunol. 2010 Apr 1;184(7):3442-9. doi: 10.4049/jimmunol.0904114. Epub 2010 Mar 1.

14.

β-Adrenergic Signaling in Mice Housed at Standard Temperatures Suppresses an Effector Phenotype in CD8+ T Cells and Undermines Checkpoint Inhibitor Therapy.

Bucsek MJ, Qiao G, MacDonald CR, Giridharan T, Evans L, Niedzwecki B, Liu H, Kokolus KM, Eng JW, Messmer MN, Attwood K, Abrams SI, Hylander BL, Repasky EA.

Cancer Res. 2017 Oct 15;77(20):5639-5651. doi: 10.1158/0008-5472.CAN-17-0546. Epub 2017 Aug 17.

15.
16.

Intratumoral delivery of CD154 homolog (Ad-ISF35) induces tumor regression: analysis of vector biodistribution, persistence and gene expression.

Melo-Cardenas J, Urquiza M, Kipps TJ, Castro JE.

Cancer Gene Ther. 2012 May;19(5):336-44. doi: 10.1038/cgt.2012.6. Epub 2012 Mar 9. Erratum in: Cancer Gene Ther. 2012 Aug;19(8):592.

17.

Cytotoxic T lymphocyte antigen-4 blockade enhances antitumor immunity by stimulating melanoma-specific T-cell motility.

Pentcheva-Hoang T, Simpson TR, Montalvo-Ortiz W, Allison JP.

Cancer Immunol Res. 2014 Oct;2(10):970-80. doi: 10.1158/2326-6066.CIR-14-0104. Epub 2014 Jul 18.

18.

Combined immunotherapy: CTLA-4 blockade potentiates anti-tumor response induced by transcutaneous immunization.

Rausch J, Lopez PA, Bialojan A, Denny M, Langguth P, Probst HC, Schild H, Radsak MP.

J Dermatol Sci. 2017 Sep;87(3):300-306. doi: 10.1016/j.jdermsci.2017.06.013. Epub 2017 Jun 16.

PMID:
28666747
19.

Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors.

Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G.

Cancer Res. 2013 Jun 15;73(12):3591-603. doi: 10.1158/0008-5472.CAN-12-4100. Epub 2013 Apr 30.

20.

Direct T cell activation via CD40 ligand generates high avidity CD8+ T cells capable of breaking immunological tolerance for the control of tumors.

Soong RS, Song L, Trieu J, Lee SY, He L, Tsai YC, Wu TC, Hung CF.

PLoS One. 2014 Mar 24;9(3):e93162. doi: 10.1371/journal.pone.0093162. eCollection 2014.

Supplemental Content

Support Center