Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair.

Batoon L, Millard SM, Wullschleger ME, Preda C, Wu AC, Kaur S, Tseng HW, Hume DA, Levesque JP, Raggatt LJ, Pettit AR.

Biomaterials. 2019 Mar;196:51-66. doi: 10.1016/j.biomaterials.2017.10.033. Epub 2017 Oct 22.

2.

Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model.

Alexander KA, Chang MK, Maylin ER, Kohler T, Müller R, Wu AC, Van Rooijen N, Sweet MJ, Hume DA, Raggatt LJ, Pettit AR.

J Bone Miner Res. 2011 Jul;26(7):1517-32. doi: 10.1002/jbmr.354.

3.

CD169(+) macrophages mediate pathological formation of woven bone in skeletal lesions of prostate cancer.

Wu AC, He Y, Broomfield A, Paatan NJ, Harrington BS, Tseng HW, Beaven EA, Kiernan DM, Swindle P, Clubb AB, Levesque JP, Winkler IG, Ling MT, Srinivasan B, Hooper JD, Pettit AR.

J Pathol. 2016 Jun;239(2):218-30. doi: 10.1002/path.4718. Epub 2016 Apr 27.

PMID:
27174786
4.

Resting and injury-induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration.

Alexander KA, Raggatt LJ, Millard S, Batoon L, Chiu-Ku Wu A, Chang MK, Hume DA, Pettit AR.

Immunol Cell Biol. 2017 Jan;95(1):7-16. doi: 10.1038/icb.2016.74. Epub 2016 Nov 15.

PMID:
27553584
5.

Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo.

Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR.

J Immunol. 2008 Jul 15;181(2):1232-44.

6.

Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification.

Raggatt LJ, Wullschleger ME, Alexander KA, Wu AC, Millard SM, Kaur S, Maugham ML, Gregory LS, Steck R, Pettit AR.

Am J Pathol. 2014 Dec;184(12):3192-204. doi: 10.1016/j.ajpath.2014.08.017. Epub 2014 Oct 5.

PMID:
25285719
7.

Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing.

Wang T, Wang Y, Menendez A, Fong C, Babey M, Tahimic CG, Cheng Z, Li A, Chang W, Bikle DD.

J Bone Miner Res. 2015 Sep;30(9):1572-84. doi: 10.1002/jbmr.2510.

8.

Absence of substance P and the sympathetic nervous system impact on bone structure and chondrocyte differentiation in an adult model of endochondral ossification.

Niedermair T, Kuhn V, Doranehgard F, Stange R, Wieskötter B, Beckmann J, Salmen P, Springorum HR, Straub RH, Zimmer A, Grifka J, Grässel S.

Matrix Biol. 2014 Sep;38:22-35. doi: 10.1016/j.matbio.2014.06.007. Epub 2014 Jul 22.

9.

Absence of B cells does not compromise intramembranous bone formation during healing in a tibial injury model.

Raggatt LJ, Alexander KA, Kaur S, Wu AC, MacDonald KP, Pettit AR.

Am J Pathol. 2013 May;182(5):1501-8. doi: 10.1016/j.ajpath.2013.01.046. Epub 2013 Mar 13.

PMID:
23499466
10.

Osteomacs and Bone Regeneration.

Batoon L, Millard SM, Raggatt LJ, Pettit AR.

Curr Osteoporos Rep. 2017 Aug;15(4):385-395. doi: 10.1007/s11914-017-0384-x. Review.

PMID:
28647885
11.

Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair.

Bernhard J, Ferguson J, Rieder B, Heimel P, Nau T, Tangl S, Redl H, Vunjak-Novakovic G.

Biomaterials. 2017 Sep;139:202-212. doi: 10.1016/j.biomaterials.2017.05.045. Epub 2017 May 31.

PMID:
28622604
12.

Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling.

Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Cruceta J, Graves BD, Einhorn TA.

Cells Tissues Organs. 2001;169(3):285-94.

PMID:
11455125
13.

Latest perspectives on macrophages in bone homeostasis.

Bozec A, Soulat D.

Pflugers Arch. 2017 Apr;469(3-4):517-525. doi: 10.1007/s00424-017-1952-8. Epub 2017 Feb 28. Review.

PMID:
28247013
14.

Macrophages in bone fracture healing: Their essential role in endochondral ossification.

Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, van Rooijen N, Radbruch A, Lucius R, Hartmann S, Duda GN, Schmidt-Bleek K.

Bone. 2018 Jan;106:78-89. doi: 10.1016/j.bone.2015.10.019. Epub 2015 Oct 31.

PMID:
26529389
15.

MMP9 regulates the cellular response to inflammation after skeletal injury.

Wang X, Yu YY, Lieu S, Yang F, Lang J, Lu C, Werb Z, Hu D, Miclau T, Marcucio R, Colnot C.

Bone. 2013 Jan;52(1):111-9. doi: 10.1016/j.bone.2012.09.018. Epub 2012 Sep 23.

16.

Bone Mass Is Compromised by the Chemotherapeutic Trabectedin in Association With Effects on Osteoblasts and Macrophage Efferocytosis.

Sinder BP, Zweifler L, Koh AJ, Michalski MN, Hofbauer LC, Aguirre JI, Roca H, McCauley LK.

J Bone Miner Res. 2017 Oct;32(10):2116-2127. doi: 10.1002/jbmr.3196. Epub 2017 Aug 31.

17.

Site specific effects of zoledronic acid during tibial and mandibular fracture repair.

Yu YY, Lieu S, Hu D, Miclau T, Colnot C.

PLoS One. 2012;7(2):e31771. doi: 10.1371/journal.pone.0031771. Epub 2012 Feb 16.

18.

Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs.

Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, Lévesque JP.

Blood. 2010 Dec 2;116(23):4815-28. doi: 10.1182/blood-2009-11-253534. Epub 2010 Aug 16.

PMID:
20713966
19.

Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair.

Hu K, Olsen BR.

J Clin Invest. 2016 Feb;126(2):509-26. doi: 10.1172/JCI82585. Epub 2016 Jan 5.

20.

Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.

Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH.

Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9656-61. Epub 2002 Jul 12.

Supplemental Content

Support Center