Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Adhesion force sensing and activation of a membrane-bound sensor to activate nisin efflux pumps in Staphylococcus aureus under mechanical and chemical stresses.

Carniello V, Harapanahalli AK, Busscher HJ, van der Mei HC.

J Colloid Interface Sci. 2018 Feb 15;512:14-20. doi: 10.1016/j.jcis.2017.10.024. Epub 2017 Oct 7.

PMID:
29054003
2.

NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus.

Kolar SL, Nagarajan V, Oszmiana A, Rivera FE, Miller HK, Davenport JE, Riordan JT, Potempa J, Barber DS, Koziel J, Elasri MO, Shaw LN.

Microbiology. 2011 Aug;157(Pt 8):2206-19. doi: 10.1099/mic.0.049692-0. Epub 2011 May 12.

3.

Acquired Nisin Resistance in Staphylococcus aureus Involves Constitutive Activation of an Intrinsic Peptide Antibiotic Detoxification Module.

Randall CP, Gupta A, Utley-Drew B, Lee SY, Morrison-Williams G, O'Neill AJ.

mSphere. 2018 Dec 12;3(6). pii: e00633-18. doi: 10.1128/mSphereDirect.00633-18.

4.

Force-Induced Strengthening of the Interaction between Staphylococcus aureus Clumping Factor B and Loricrin.

Vitry P, Valotteau C, Feuillie C, Bernard S, Alsteens D, Geoghegan JA, Dufrêne YF.

MBio. 2017 Dec 5;8(6). pii: e01748-17. doi: 10.1128/mBio.01748-17.

5.

Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion.

Pimentel-Filho Nde J, Martins MC, Nogueira GB, Mantovani HC, Vanetti MC.

Int J Food Microbiol. 2014 Nov 3;190:1-8. doi: 10.1016/j.ijfoodmicro.2014.08.004. Epub 2014 Aug 9.

PMID:
25173449
6.

Sticky Matrix: Adhesion Mechanism of the Staphylococcal Polysaccharide Intercellular Adhesin.

Formosa-Dague C, Feuillie C, Beaussart A, Derclaye S, Kucharíková S, Lasa I, Van Dijck P, Dufrêne YF.

ACS Nano. 2016 Mar 22;10(3):3443-52. doi: 10.1021/acsnano.5b07515. Epub 2016 Feb 23.

PMID:
26908275
7.

Influence of Adhesion Force on icaA and cidA Gene Expression and Production of Matrix Components in Staphylococcus aureus Biofilms.

Harapanahalli AK, Chen Y, Li J, Busscher HJ, van der Mei HC.

Appl Environ Microbiol. 2015 May 15;81(10):3369-78. doi: 10.1128/AEM.04178-14. Epub 2015 Mar 6.

9.

Forces guiding staphylococcal adhesion.

Herman-Bausier P, Formosa-Dague C, Feuillie C, Valotteau C, Dufrêne YF.

J Struct Biol. 2017 Jan;197(1):65-69. doi: 10.1016/j.jsb.2015.12.009. Epub 2015 Dec 17.

PMID:
26707623
10.

In vitro studies indicate a high resistance potential for the lantibiotic nisin in Staphylococcus aureus and define a genetic basis for nisin resistance.

Blake KL, Randall CP, O'Neill AJ.

Antimicrob Agents Chemother. 2011 May;55(5):2362-8. doi: 10.1128/AAC.01077-10. Epub 2011 Feb 7.

11.

Human methicillin-sensitive Staphylococcus aureus biofilms: potential associations with antibiotic resistance persistence and surface polysaccharide antigens.

Babra C, Tiwari J, Costantino P, Sunagar R, Isloor S, Hegde N, Mukkur T.

J Basic Microbiol. 2014 Jul;54(7):721-8. doi: 10.1002/jobm.201200557. Epub 2013 May 17.

PMID:
23686411
12.

Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG.

Formosa-Dague C, Speziale P, Foster TJ, Geoghegan JA, Dufrêne YF.

Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):410-5. doi: 10.1073/pnas.1519265113. Epub 2015 Dec 29.

13.

Surface enhanced fluorescence and nanoscopic cell wall deformation in adhering Staphylococcus aureus upon exposure to cell wall active and non-active antibiotics.

Carniello V, Peterson BW, Sjollema J, Busscher HJ, van der Mei HC.

Nanoscale. 2018 Jun 14;10(23):11123-11133. doi: 10.1039/c8nr01669k.

PMID:
29873372
14.

Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters.

Hiron A, Falord M, Valle J, Débarbouillé M, Msadek T.

Mol Microbiol. 2011 Aug;81(3):602-22. doi: 10.1111/j.1365-2958.2011.07735.x. Epub 2011 Jul 4.

15.

Effects of nisin and lysozyme on growth inhibition and biofilm formation capacity of Staphylococcus aureus strains isolated from raw milk and cheese samples.

Sudagidan M, Yemenicioğlu A.

J Food Prot. 2012 Sep;75(9):1627-33. doi: 10.4315/0362-028X.JFP-12-001.

PMID:
22947470
16.

[Efflux pumps: their role in Staphylococcus aureus antibiotic resistance].

Doléans-Jordheim A, Michalet S, Bergeron E, Boisset S, Souard F, Dumontet C, Dijoux-Franca MG, Freney J.

Ann Biol Clin (Paris). 2008 Sep-Oct;66(5):499-508. doi: 10.1684/abc.2008.0266. Review. French.

17.

A bioengineered nisin derivative to control biofilms of Staphylococcus pseudintermedius.

Field D, Gaudin N, Lyons F, O'Connor PM, Cotter PD, Hill C, Ross RP.

PLoS One. 2015 Mar 19;10(3):e0119684. doi: 10.1371/journal.pone.0119684. eCollection 2015.

18.

Mechanomicrobiology: How Mechanical Forces Activate Staphylococcus aureus Adhesion.

Geoghegan JA, Dufrêne YF.

Trends Microbiol. 2018 Aug;26(8):645-648. doi: 10.1016/j.tim.2018.05.004. Epub 2018 Jun 1.

PMID:
29866473
19.

Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections.

Saginur R, Stdenis M, Ferris W, Aaron SD, Chan F, Lee C, Ramotar K.

Antimicrob Agents Chemother. 2006 Jan;50(1):55-61.

20.

Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth.

Carniello V, Peterson BW, van der Mei HC, Busscher HJ.

Adv Colloid Interface Sci. 2018 Nov;261:1-14. doi: 10.1016/j.cis.2018.10.005. Epub 2018 Oct 24. Review.

Supplemental Content

Support Center