Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 199

1.

Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1.

Grobbler C, Virdis B, Nouwens A, Harnisch F, Rabaey K, Bond PL.

Bioelectrochemistry. 2018 Feb;119:172-179. doi: 10.1016/j.bioelechem.2017.10.001. Epub 2017 Oct 3.

PMID:
29032328
2.

Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes.

Grobbler C, Virdis B, Nouwens A, Harnisch F, Rabaey K, Bond PL.

Syst Appl Microbiol. 2015 Mar;38(2):135-9. doi: 10.1016/j.syapm.2014.11.007. Epub 2014 Nov 29.

PMID:
25523930
3.

Tactic Response of Shewanella oneidensis MR-1 toward Insoluble Electron Acceptors.

Oram J, Jeuken LJC.

MBio. 2019 Jan 15;10(1). pii: e02490-18. doi: 10.1128/mBio.02490-18.

4.

Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1.

Baron D, LaBelle E, Coursolle D, Gralnick JA, Bond DR.

J Biol Chem. 2009 Oct 16;284(42):28865-73. doi: 10.1074/jbc.M109.043455. Epub 2009 Aug 6.

5.

An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1.

Fowler GJ, Pereira-Medrano AG, Jaffe S, Pasternak G, Pham TK, Ledezma P, Hall ST, Ieropoulos IA, Wright PC.

Proteomics. 2016 Nov;16(21):2764-2775. doi: 10.1002/pmic.201500538. Epub 2016 Oct 18.

PMID:
27599463
6.

Contribution of direct electron transfer mechanisms to overall electron transfer in microbial fuel cells utilising Shewanella oneidensis as biocatalyst.

Fapetu S, Keshavarz T, Clements M, Kyazze G.

Biotechnol Lett. 2016 Sep;38(9):1465-73. doi: 10.1007/s10529-016-2128-x. Epub 2016 May 19.

PMID:
27193895
7.

Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila.

Conley BE, Intile PJ, Bond DR, Gralnick JA.

Appl Environ Microbiol. 2018 Nov 15;84(23). pii: e02134-18. doi: 10.1128/AEM.02134-18. Print 2018 Dec 1.

8.

Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis.

Kotloski NJ, Gralnick JA.

MBio. 2013 Jan 15;4(1). pii: e00553-12. doi: 10.1128/mBio.00553-12.

9.

Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.

Kitayama M, Koga R, Kasai T, Kouzuma A, Watanabe K.

Appl Environ Microbiol. 2017 Aug 17;83(17). pii: e00903-17. doi: 10.1128/AEM.00903-17. Print 2017 Sep 1.

10.

Sulfur-Mediated Electron Shuttling Sustains Microbial Long-Distance Extracellular Electron Transfer with the Aid of Metallic Iron Sulfides.

Kondo K, Okamoto A, Hashimoto K, Nakamura R.

Langmuir. 2015 Jul 7;31(26):7427-34. doi: 10.1021/acs.langmuir.5b01033. Epub 2015 Jun 23.

PMID:
26070345
11.

Conduction-band edge dependence of carbon-coated hematite stimulated extracellular electron transfer of Shewanella oneidensis in bioelectrochemical systems.

Zhou S, Tang J, Yuan Y.

Bioelectrochemistry. 2015 Apr;102:29-34. doi: 10.1016/j.bioelechem.2014.11.005. Epub 2014 Nov 29.

PMID:
25483997
12.

Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.

Pinto D, Coradin T, Laberty-Robert C.

Bioelectrochemistry. 2018 Apr;120:1-9. doi: 10.1016/j.bioelechem.2017.10.008. Epub 2017 Oct 31.

PMID:
29132011
13.

Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism.

Babauta JT, Nguyen HD, Beyenal H.

Environ Sci Technol. 2011 Aug 1;45(15):6654-60. doi: 10.1021/es200865u. Epub 2011 Jun 29.

14.

Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.

Li F, Li Y, Sun L, Chen X, An X, Yin C, Cao Y, Wu H, Song H.

ACS Synth Biol. 2018 Mar 16;7(3):885-895. doi: 10.1021/acssynbio.7b00390. Epub 2018 Feb 21.

PMID:
29429342
15.

Tracking of Shewanella oneidensis MR-1 biofilm formation of a microbial electrochemical system via differential pulse voltammetry.

Choi S, Kim B, Chang IS.

Bioresour Technol. 2018 Apr;254:357-361. doi: 10.1016/j.biortech.2018.01.047. Epub 2018 Jan 11.

PMID:
29398289
16.

Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway.

Yang Y, Ding Y, Hu Y, Cao B, Rice SA, Kjelleberg S, Song H.

ACS Synth Biol. 2015 Jul 17;4(7):815-23. doi: 10.1021/sb500331x. Epub 2015 Feb 5.

PMID:
25621739
17.

Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities.

McLean JS, Wanger G, Gorby YA, Wainstein M, McQuaid J, Ishii SI, Bretschger O, Beyenal H, Nealson KH.

Environ Sci Technol. 2010 Apr 1;44(7):2721-7. doi: 10.1021/es903043p.

PMID:
20199066
18.

The utility of Shewanella japonica for microbial fuel cells.

Biffinger JC, Fitzgerald LA, Ray R, Little BJ, Lizewski SE, Petersen ER, Ringeisen BR, Sanders WC, Sheehan PE, Pietron JJ, Baldwin JW, Nadeau LJ, Johnson GR, Ribbens M, Finkel SE, Nealson KH.

Bioresour Technol. 2011 Jan;102(1):290-7. doi: 10.1016/j.biortech.2010.06.078.

PMID:
20663660
19.

Engineering a Native Inducible Expression System in Shewanella oneidensis to Control Extracellular Electron Transfer.

West EA, Jain A, Gralnick JA.

ACS Synth Biol. 2017 Sep 15;6(9):1627-1634. doi: 10.1021/acssynbio.6b00349. Epub 2017 Jun 5.

PMID:
28562022
20.

Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor.

Rosenbaum MA, Bar HY, Beg QK, Segrè D, Booth J, Cotta MA, Angenent LT.

PLoS One. 2012;7(2):e30827. doi: 10.1371/journal.pone.0030827. Epub 2012 Feb 1.

Supplemental Content

Support Center