Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

A tuneable microfluidic system for long duration chemotaxis experiments in a 3D collagen matrix.

Aizel K, Clark AG, Simon A, Geraldo S, Funfak A, Vargas P, Bibette J, Vignjevic DM, Bremond N.

Lab Chip. 2017 Nov 7;17(22):3851-3861. doi: 10.1039/c7lc00649g.

PMID:
29022983
2.

Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber.

Saadi W, Rhee SW, Lin F, Vahidi B, Chung BG, Jeon NL.

Biomed Microdevices. 2007 Oct;9(5):627-35.

PMID:
17530414
3.

Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19.

Haessler U, Pisano M, Wu M, Swartz MA.

Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5614-9. doi: 10.1073/pnas.1014920108. Epub 2011 Mar 21.

4.

An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies.

Haessler U, Kalinin Y, Swartz MA, Wu M.

Biomed Microdevices. 2009 Aug;11(4):827-35. doi: 10.1007/s10544-009-9299-3.

PMID:
19343497
5.

Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient.

Jeong HH, Lee SH, Kim JM, Kim HE, Kim YG, Yoo JY, Chang WS, Lee CS.

Biosens Bioelectron. 2010 Oct 15;26(2):351-6. doi: 10.1016/j.bios.2010.08.006. Epub 2010 Aug 7.

PMID:
20810268
6.

Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices.

Lin F, Nguyen CM, Wang SJ, Saadi W, Gross SP, Jeon NL.

Ann Biomed Eng. 2005 Apr;33(4):475-82.

PMID:
15909653
7.

Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations.

Del Amo C, Borau C, Movilla N, Asín J, García-Aznar JM.

Integr Biol (Camb). 2017 Apr 18;9(4):339-349. doi: 10.1039/c7ib00022g.

PMID:
28300261
8.

Study of the Chemotactic Response of Multicellular Spheroids in a Microfluidic Device.

Ayuso JM, Basheer HA, Monge R, Sánchez-Álvarez P, Doblaré M, Shnyder SD, Vinader V, Afarinkia K, Fernández LJ, Ochoa I.

PLoS One. 2015 Oct 7;10(10):e0139515. doi: 10.1371/journal.pone.0139515. eCollection 2015.

9.

Simple microfluidic device for studying chemotaxis in response to dual gradients.

Moussavi-Harami SF, Pezzi HM, Huttenlocher A, Beebe DJ.

Biomed Microdevices. 2015;17(3):9955. doi: 10.1007/s10544-015-9955-8.

10.

Oscillatory behavior of neutrophils under opposing chemoattractant gradients supports a winner-take-all mechanism.

Byrne MB, Kimura Y, Kapoor A, He Y, Mattam KS, Hasan KM, Olson LN, Wang F, Kenis PJ, Rao CV.

PLoS One. 2014 Jan 21;9(1):e85726. doi: 10.1371/journal.pone.0085726. eCollection 2014.

11.

Planar Gradient Diffusion System to Investigate Chemotaxis in a 3D Collagen Matrix.

Stout DA, Toyjanova J, Franck C.

J Vis Exp. 2015 Jun 12;(100):e52948. doi: 10.3791/52948.

12.

Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients.

Chiang HJ, Yeh SL, Peng CC, Liao WH, Tung YC.

J Vis Exp. 2017 Feb 23;(120). doi: 10.3791/55292.

13.

Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients.

Baker BM, Trappmann B, Stapleton SC, Toro E, Chen CS.

Lab Chip. 2013 Aug 21;13(16):3246-52. doi: 10.1039/c3lc50493j. Epub 2013 Jun 20.

14.

In vitro analysis of chemotactic leukocyte migration in 3D environments.

Sixt M, Lämmermann T.

Methods Mol Biol. 2011;769:149-65. doi: 10.1007/978-1-61779-207-6_11.

PMID:
21748675
15.

Open access microfluidic device for the study of cell migration during chemotaxis.

Jowhar D, Wright G, Samson PC, Wikswo JP, Janetopoulos C.

Integr Biol (Camb). 2010 Nov;2(11-12):648-58. doi: 10.1039/c0ib00110d. Epub 2010 Oct 15.

16.

A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.

Chang CW, Cheng YJ, Tu M, Chen YH, Peng CC, Liao WH, Tung YC.

Lab Chip. 2014 Oct 7;14(19):3762-72. doi: 10.1039/c4lc00732h.

PMID:
25096368
17.

A novel 3-D bio-microfluidic system mimicking in vivo heterogeneous tumour microstructures reveals complex tumour-stroma interactions.

Fan Q, Liu R, Jiao Y, Tian C, Farrell JD, Diao W, Wang X, Zhang F, Yuan W, Han H, Chen J, Yang Y, Zhang X, Ye F, Li M, Ouyang Z, Liu L.

Lab Chip. 2017 Aug 8;17(16):2852-2860. doi: 10.1039/c7lc00191f.

PMID:
28726916
18.

Cooperative roles of SDF-1α and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model.

Kim BJ, Hannanta-anan P, Chau M, Kim YS, Swartz MA, Wu M.

PLoS One. 2013 Jul 15;8(7):e68422. doi: 10.1371/journal.pone.0068422. Print 2013.

19.

A microfluidic device for quantifying bacterial chemotaxis in stable concentration gradients.

Englert DL, Manson MD, Jayaraman A.

J Vis Exp. 2010 Apr 19;(38). pii: 1779. doi: 10.3791/1779.

20.

Microfluidic device for studying cell migration in single or co-existing chemical gradients and electric fields.

Li J, Zhu L, Zhang M, Lin F.

Biomicrofluidics. 2012 Jun;6(2):24121-2412113. doi: 10.1063/1.4718721. Epub 2012 May 16.

Supplemental Content

Support Center