Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Deciphering the electric code of Geobacter sulfurreducens in cocultures with Pseudomonas aeruginosa via SWATH-MS proteomics.

Semenec L, Laloo AE, Schulz BL, Vergara IA, Bond PL, Franks AE.

Bioelectrochemistry. 2018 Feb;119:150-160. doi: 10.1016/j.bioelechem.2017.09.013. Epub 2017 Oct 3.

PMID:
28992596
2.

Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens.

Rotaru AE, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, Lovley DR.

Appl Environ Microbiol. 2012 Nov;78(21):7645-51. doi: 10.1128/AEM.01946-12. Epub 2012 Aug 24.

3.

Geobacter Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms.

Ueki T, Nevin KP, Rotaru AE, Wang LY, Ward JE, Woodard TL, Lovley DR.

MBio. 2018 Jul 10;9(4). pii: e01273-18. doi: 10.1128/mBio.01273-18.

4.

Comparative transcriptomic insights into the mechanisms of electron transfer in Geobacter co-cultures with activated carbon and magnetite.

Zheng S, Liu F, Li M, Xiao L, Wang O.

Sci China Life Sci. 2018 Jul;61(7):787-798. doi: 10.1007/s11427-017-9177-1. Epub 2017 Oct 31.

PMID:
29101585
5.

Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange.

Shrestha PM, Rotaru AE, Aklujkar M, Liu F, Shrestha M, Summers ZM, Malvankar N, Flores DC, Lovley DR.

Environ Microbiol Rep. 2013 Dec;5(6):904-10. doi: 10.1111/1758-2229.12093. Epub 2013 Sep 12.

PMID:
24249299
6.

Transcriptomic and genetic analysis of direct interspecies electron transfer.

Shrestha PM, Rotaru AE, Summers ZM, Shrestha M, Liu F, Lovley DR.

Appl Environ Microbiol. 2013 Apr;79(7):2397-404. doi: 10.1128/AEM.03837-12. Epub 2013 Feb 1.

7.

Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures.

Chen S, Rotaru AE, Liu F, Philips J, Woodard TL, Nevin KP, Lovley DR.

Bioresour Technol. 2014 Dec;173:82-86. doi: 10.1016/j.biortech.2014.09.009. Epub 2014 Sep 22.

PMID:
25285763
8.

Enhanced Growth of Pilin-Deficient Geobacter sulfurreducens Mutants in Carbon Poor and Electron Donor Limiting Conditions.

Semenec L, Vergara IA, Laloo AE, Mathews ER, Bond PL, Franks AE.

Microb Ecol. 2019 Oct;78(3):618-630. doi: 10.1007/s00248-019-01316-8. Epub 2019 Feb 13. Erratum in: Microb Ecol. 2019 Mar 30;:.

PMID:
30759269
9.

Electrochemical evidence for direct interspecies electron transfer between Geobacter sulfurreducens and Prosthecochloris aestuarii.

Huang L, Liu X, Tang J, Yu L, Zhou S.

Bioelectrochemistry. 2019 Jun;127:21-25. doi: 10.1016/j.bioelechem.2019.01.002. Epub 2019 Jan 5.

PMID:
30641310
10.

Characterization of syntrophic Geobacter communities using ToF-SIMS.

Wei W, Zhang Y, Komorek R, Plymale A, Yu R, Wang B, Zhu Z, Liu F, Yu XY.

Biointerphases. 2017 Aug 18;12(5):05G601. doi: 10.1116/1.4986832.

PMID:
28821212
11.

Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains.

Yan J, Ritalahti KM, Wagner DD, Löffler FE.

Appl Environ Microbiol. 2012 Sep;78(18):6630-6. doi: 10.1128/AEM.01535-12. Epub 2012 Jul 6.

12.
13.

Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species.

Liu X, Zhuo S, Rensing C, Zhou S.

ISME J. 2018 Sep;12(9):2142-2151. doi: 10.1038/s41396-018-0193-y. Epub 2018 Jun 6.

14.

Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen.

Kimura Z, Okabe S.

ISME J. 2013 Aug;7(8):1472-82. doi: 10.1038/ismej.2013.40. Epub 2013 Mar 14.

15.

Syntrophic anaerobic photosynthesis via direct interspecies electron transfer.

Ha PT, Lindemann SR, Shi L, Dohnalkova AC, Fredrickson JK, Madigan MT, Beyenal H.

Nat Commun. 2017 Jan 9;8:13924. doi: 10.1038/ncomms13924.

16.

Syntrophic growth via quinone-mediated interspecies electron transfer.

Smith JA, Nevin KP, Lovley DR.

Front Microbiol. 2015 Feb 17;6:121. doi: 10.3389/fmicb.2015.00121. eCollection 2015.

17.

Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria.

Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR.

Science. 2010 Dec 3;330(6009):1413-5. doi: 10.1126/science.1196526.

18.

Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association.

Nagarajan H, Embree M, Rotaru AE, Shrestha PM, Feist AM, Palsson BØ, Lovley DR, Zengler K.

Nat Commun. 2013;4:2809. doi: 10.1038/ncomms3809.

PMID:
24264237
19.

A Geobacter sulfurreducens strain expressing pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production.

Liu X, Tremblay PL, Malvankar NS, Nevin KP, Lovley DR, Vargas M.

Appl Environ Microbiol. 2014 Feb;80(3):1219-24. doi: 10.1128/AEM.02938-13. Epub 2013 Dec 2.

20.

A novel bioaugmentation strategy to accelerate methanogenesis via adding Geobacter sulfurreducens PCA in anaerobic digestion system.

Zhang S, Chang J, Liu W, Pan Y, Cui K, Chen X, Liang P, Zhang X, Wu Q, Qiu Y, Huang X.

Sci Total Environ. 2018 Nov 15;642:322-326. doi: 10.1016/j.scitotenv.2018.06.043. Epub 2018 Jun 14.

PMID:
29906723

Supplemental Content

Support Center