Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Genetic transformation of the white-rot fungus Dichomitus squalens using a new commercial protoplasting cocktail.

Daly P, Slaghek GG, Casado López S, Wiebenga A, Hilden KS, de Vries RP, Mäkelä MR.

J Microbiol Methods. 2017 Dec;143:38-43. doi: 10.1016/j.mimet.2017.10.001. Epub 2017 Oct 4.

PMID:
28987554
2.

Transformation of Botrytis cinerea with the hygromycin B resistance gene, hph.

Hamada W, Reignault P, Bompeix G, Boccara M.

Curr Genet. 1994 Sep;26(3):251-5.

PMID:
7859308
3.

Optimization of Production Conditions for Protoplasts and Polyethylene Glycol-Mediated Transformation of Gaeumannomyces tritici.

Wang M, Zhang J, Wang L, Han L, Zhang X, Feng J.

Molecules. 2018 May 24;23(6). pii: E1253. doi: 10.3390/molecules23061253.

4.

Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens.

Rytioja J, Hildén K, Mäkinen S, Vehmaanperä J, Hatakka A, Mäkelä MR.

PLoS One. 2015 Dec 14;10(12):e0145166. doi: 10.1371/journal.pone.0145166. eCollection 2015.

5.

Comparison of different transformation methods for Aspergillus giganteus.

Meyer V, Mueller D, Strowig T, Stahl U.

Curr Genet. 2003 Aug;43(5):371-7. Epub 2003 May 17.

PMID:
12756496
6.

The molecular response of the white-rot fungus Dichomitus squalens to wood and non-woody biomass as examined by transcriptome and exoproteome analyses.

Rytioja J, Hildén K, Di Falco M, Zhou M, Aguilar-Pontes MV, Sietiö OM, Tsang A, de Vries RP, Mäkelä MR.

Environ Microbiol. 2017 Mar;19(3):1237-1250. doi: 10.1111/1462-2920.13652. Epub 2017 Jan 23.

PMID:
28028889
7.

Induction of Genes Encoding Plant Cell Wall-Degrading Carbohydrate-Active Enzymes by Lignocellulose-Derived Monosaccharides and Cellobiose in the White-Rot Fungus Dichomitus squalens.

Casado López S, Peng M, Issak TY, Daly P, de Vries RP, Mäkelä MR.

Appl Environ Microbiol. 2018 May 17;84(11). pii: e00403-18. doi: 10.1128/AEM.00403-18. Print 2018 Jun 1.

8.

Transformation of taxol-producing endophytic fungi by restriction enzyme-mediated integration (REMI).

Wang Y, Guo B, Miao Z, Tang K.

FEMS Microbiol Lett. 2007 Aug;273(2):253-9. Epub 2007 Jun 30.

9.

[Preparation and Regeneration of Protoplasts from Monascus purpureus and Genetic Transformation System.].

Zhou LH, Li GQ, Wang ZX, Zhu-Ge J.

Yi Chuan. 2005 May;27(3):423-8. Chinese.

PMID:
15985408
10.

A highly efficient polyethylene glycol-mediated transformation method for mushrooms.

Li G, Li R, Liu Q, Wang Q, Chen M, Li B.

FEMS Microbiol Lett. 2006 Mar;256(2):203-8.

11.

Transcriptional analysis of selected cellulose-acting enzymes encoding genes of the white-rot fungus Dichomitus squalens on spruce wood and microcrystalline cellulose.

Rytioja J, Hildén K, Hatakka A, Mäkelä MR.

Fungal Genet Biol. 2014 Nov;72:91-98. doi: 10.1016/j.fgb.2013.12.008. Epub 2014 Jan 3.

PMID:
24394946
12.

An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus.

Zhang Jj, Shi L, Chen H, Sun Yq, Zhao Mw, Ren A, Chen Mj, Wang H, Feng Zy.

Microbiol Res. 2014 Sep-Oct;169(9-10):741-8. doi: 10.1016/j.micres.2014.01.004. Epub 2014 Feb 8.

13.

A transformation system for an ectomycorrhizal basidiomycete, Lyophyllum shimeji.

Saito T, Tanaka N, Shinozawa T.

Biosci Biotechnol Biochem. 2001 Aug;65(8):1928-31.

14.
15.

Draft Genome Sequences of Three Monokaryotic Isolates of the White-Rot Basidiomycete Fungus Dichomitus squalens.

Casado López S, Peng M, Daly P, Andreopoulos B, Pangilinan J, Lipzen A, Riley R, Ahrendt S, Ng V, Barry K, Daum C, Grigoriev IV, Hildén KS, Mäkelä MR, de Vries RP.

Microbiol Resour Announc. 2019 May 2;8(18). pii: e00264-19. doi: 10.1128/MRA.00264-19.

16.

An Efficient PEG/CaCl₂-Mediated Transformation Approach for the Medicinal Fungus Wolfiporia cocos.

Sun Q, Wei W, Zhao J, Song J, Peng F, Zhang S, Zheng Y, Chen P, Zhu W.

J Microbiol Biotechnol. 2015 Sep;25(9):1528-31. doi: 10.4014/jmb.1501.01053.

17.

Genetic transformation of the dermatophyte, Trichophyton mentagrophytes, based on the use of G418 resistance as a dominant selectable marker.

Yamada T, Makimura K, Hisajima T, Ito M, Umeda Y, Abe S.

J Dermatol Sci. 2008 Jan;49(1):53-61. Epub 2007 Dec 4.

PMID:
18055182
18.

Transformation of wheat protoplasts mediated by cationic liposome and regeneration of transgenic plantlets.

Zhu Z, Sun B, Liu C, Xiao G, Li X.

Chin J Biotechnol. 1993;9(4):257-61.

PMID:
8061235
19.

Stable co-transformation of maize protoplasts with gusA and neo genes.

Lyznik LA, Ryan RD, Ritchie SW, Hodges TK.

Plant Mol Biol. 1989 Aug;13(2):151-61.

PMID:
2562394
20.

Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals.

Irie T, Honda Y, Hirano T, Sato T, Enei H, Watanabe T, Kuwahara M.

Appl Microbiol Biotechnol. 2001 Sep;56(5-6):707-9.

PMID:
11601618

Supplemental Content

Support Center