Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Parallel Evolution of Chromatin Structure Underlying Metabolic Adaptation.

Cheng J, Guo X, Cai P, Cheng X, Piškur J, Ma Y, Jiang H, Gu Z.

Mol Biol Evol. 2017 Nov 1;34(11):2870-2878. doi: 10.1093/molbev/msx220.

PMID:
28961859
2.

Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts.

Rozpędowska E, Hellborg L, Ishchuk OP, Orhan F, Galafassi S, Merico A, Woolfit M, Compagno C, Piskur J.

Nat Commun. 2011;2:302. doi: 10.1038/ncomms1305.

3.

Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts.

Lin Z, Li WH.

Mol Biol Evol. 2011 Jan;28(1):131-42. doi: 10.1093/molbev/msq184. Epub 2010 Jul 25.

4.

Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

Schifferdecker AJ, Siurkus J, Andersen MR, Joerck-Ramberg D, Ling Z, Zhou N, Blevins JE, Sibirny AA, Piškur J, Ishchuk OP.

Appl Microbiol Biotechnol. 2016 Apr;100(7):3219-31. doi: 10.1007/s00253-015-7266-x. Epub 2016 Jan 8. Erratum in: Appl Microbiol Biotechnol. 2016 Apr;100(7):3233.

5.
6.

Identifying cis-regulatory changes involved in the evolution of aerobic fermentation in yeasts.

Lin Z, Wang TY, Tsai BS, Wu FT, Yu FJ, Tseng YJ, Sung HM, Li WH.

Genome Biol Evol. 2013;5(6):1065-78. doi: 10.1093/gbe/evt067.

7.

Dekkera bruxellensis--spoilage yeast with biotechnological potential, and a model for yeast evolution, physiology and competitiveness.

Blomqvist J, Passoth V.

FEMS Yeast Res. 2015 Jun;15(4):fov021. doi: 10.1093/femsyr/fov021. Epub 2015 May 7. Review.

PMID:
25956542
8.

Mitochondrial genome from the facultative anaerobe and petite-positive yeast Dekkera bruxellensis contains the NADH dehydrogenase subunit genes.

Procházka E, Poláková S, Piskur J, Sulo P.

FEMS Yeast Res. 2010 Aug 1;10(5):545-57. doi: 10.1111/j.1567-1364.2010.00644.x. Epub 2010 May 10.

9.

Evidence of association between nucleosome occupancy and the evolution of transcription factor binding sites in yeast.

Swamy KB, Chu WY, Wang CY, Tsai HK, Wang D.

BMC Evol Biol. 2011 May 31;11:150. doi: 10.1186/1471-2148-11-150.

10.

The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties.

Piškur J, Ling Z, Marcet-Houben M, Ishchuk OP, Aerts A, LaButti K, Copeland A, Lindquist E, Barry K, Compagno C, Bisson L, Grigoriev IV, Gabaldón T, Phister T.

Int J Food Microbiol. 2012 Jul 2;157(2):202-9. doi: 10.1016/j.ijfoodmicro.2012.05.008. Epub 2012 May 14.

PMID:
22663979
11.

Transcriptome of the alternative ethanol production strain Dekkera bruxellensis CBS 11270 in sugar limited, low oxygen cultivation.

Tiukova IA, Petterson ME, Tellgren-Roth C, Bunikis I, Eberhard T, Pettersson OV, Passoth V.

PLoS One. 2013;8(3):e58455. doi: 10.1371/journal.pone.0058455. Epub 2013 Mar 13.

12.

Fermentation characteristics of Dekkera bruxellensis strains.

Blomqvist J, Eberhard T, Schnürer J, Passoth V.

Appl Microbiol Biotechnol. 2010 Jul;87(4):1487-97. doi: 10.1007/s00253-010-2619-y. Epub 2010 May 2.

PMID:
20437232
13.

Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation.

Castro-Prego R, Lamas-Maceiras M, Soengas P, Carneiro I, González-Siso I, Cerdán ME.

Biochem J. 2009 Dec 14;425(1):235-43. doi: 10.1042/BJ20091500.

PMID:
19807692
14.

Insights into the Dekkera bruxellensis genomic landscape: comparative genomics reveals variations in ploidy and nutrient utilisation potential amongst wine isolates.

Borneman AR, Zeppel R, Chambers PJ, Curtin CD.

PLoS Genet. 2014 Feb 13;10(2):e1004161. doi: 10.1371/journal.pgen.1004161. eCollection 2014 Feb.

15.

Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.

Ansari SA, Paul E, Sommer S, Lieleg C, He Q, Daly AZ, Rode KA, Barber WT, Ellis LC, LaPorta E, Orzechowski AM, Taylor E, Reeb T, Wong J, Korber P, Morse RH.

J Biol Chem. 2014 May 23;289(21):14981-95. doi: 10.1074/jbc.M113.529354. Epub 2014 Apr 11. Erratum in: J Biol Chem. 2016 May 6;291(19):9938.

16.

On the catabolism of amino acids in the yeast Dekkera bruxellensis and the implications for industrial fermentation processes.

Parente DC, Cajueiro DBB, Moreno ICP, Leite FCB, De Barros Pita W, De Morais MA Jr.

Yeast. 2018 Mar;35(3):299-309. doi: 10.1002/yea.3290. Epub 2017 Nov 29.

17.

Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays.

Levo M, Avnit-Sagi T, Lotan-Pompan M, Kalma Y, Weinberger A, Yakhini Z, Segal E.

Mol Cell. 2017 Feb 16;65(4):604-617.e6. doi: 10.1016/j.molcel.2017.01.007.

18.

A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

Hagman A, Piškur J.

PLoS One. 2015 Jan 24;10(1):e0116942. doi: 10.1371/journal.pone.0116942. eCollection 2015.

19.

Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism.

Rintala E, Jouhten P, Toivari M, Wiebe MG, Maaheimo H, Penttilä M, Ruohonen L.

OMICS. 2011 Jul-Aug;15(7-8):461-76. doi: 10.1089/omi.2010.0082. Epub 2011 Feb 24.

20.

The pattern and evolution of looped gene bendability.

Dai Z, Xiong Y, Dai X.

Mol Biol Evol. 2014 Feb;31(2):319-29. doi: 10.1093/molbev/mst188. Epub 2013 Oct 11.

PMID:
24124207

Supplemental Content

Support Center