Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

Dorsal Root Ganglia Mitochondrial Biochemical Changes in Non-diabetic and Streptozotocin-Induced Diabetic Mice Fed with a Standard or High-Fat Diet.

Guilford BL, Ryals JM, Lezi E, Swerdlow RH, Wright DE.

J Neurol Neurosci. 2017;8(2). pii: 180. doi: 10.21767/2171-6625.1000180. Epub 2017 Mar 27.

2.

Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes.

Roy Chowdhury SK, Smith DR, Saleh A, Schapansky J, Marquez A, Gomes S, Akude E, Morrow D, Calcutt NA, Fernyhough P.

Brain. 2012 Jun;135(Pt 6):1751-66. doi: 10.1093/brain/aws097. Epub 2012 May 4.

3.

PGC-1α regulation of mitochondrial degeneration in experimental diabetic neuropathy.

Choi J, Chandrasekaran K, Inoue T, Muragundla A, Russell JW.

Neurobiol Dis. 2014 Apr;64:118-30. doi: 10.1016/j.nbd.2014.01.001. Epub 2014 Jan 11.

4.

Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats.

Akude E, Zherebitskaya E, Chowdhury SK, Smith DR, Dobrowsky RT, Fernyhough P.

Diabetes. 2011 Jan;60(1):288-97. doi: 10.2337/db10-0818. Epub 2010 Sep 28.

5.

Diabetes impairs an interleukin-1β-dependent pathway that enhances neurite outgrowth through JAK/STAT3 modulation of mitochondrial bioenergetics in adult sensory neurons.

Saleh A, Chowdhury SK, Smith DR, Balakrishnan S, Tessler L, Schartner E, Bilodeau A, Van Der Ploeg R, Fernyhough P.

Mol Brain. 2013 Oct 24;6:45. doi: 10.1186/1756-6606-6-45.

6.

Hypoglycemic effect of catalpol on high-fat diet/streptozotocin-induced diabetic mice by increasing skeletal muscle mitochondrial biogenesis.

Li X, Xu Z, Jiang Z, Sun L, Ji J, Miao J, Zhang X, Li X, Huang S, Wang T, Zhang L.

Acta Biochim Biophys Sin (Shanghai). 2014 Sep;46(9):738-48. doi: 10.1093/abbs/gmu065.

PMID:
25178463
7.

Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment.

Chowdhury SK, Zherebitskaya E, Smith DR, Akude E, Chattopadhyay S, Jolivalt CG, Calcutt NA, Fernyhough P.

Diabetes. 2010 Apr;59(4):1082-91. doi: 10.2337/db09-1299. Epub 2010 Jan 26.

9.

Phenotypic changes in diabetic neuropathy induced by a high-fat diet in diabetic C57BL/6 mice.

Guilford BL, Ryals JM, Wright DE.

Exp Diabetes Res. 2011;2011:848307. doi: 10.1155/2011/848307. Epub 2011 Nov 14.

10.

Ciliary neurotrophic factor reverses aberrant mitochondrial bioenergetics through the JAK/STAT pathway in cultured sensory neurons derived from streptozotocin-induced diabetic rodents.

Chowdhury SR, Saleh A, Akude E, Smith DR, Morrow D, Tessler L, Calcutt NA, Fernyhough P.

Cell Mol Neurobiol. 2014 Jul;34(5):643-9. doi: 10.1007/s10571-014-0054-9. Epub 2014 Mar 30.

PMID:
24682898
11.

Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes.

Chowdhury SK, Dobrowsky RT, Fernyhough P.

Mitochondrion. 2011 Nov;11(6):845-54. doi: 10.1016/j.mito.2011.06.007. Epub 2011 Jul 2. Review.

12.

The role of nerve inflammation and exogenous iron load in experimental peripheral diabetic neuropathy (PDN).

Baum P, Kosacka J, Estrela-Lopis I, Woidt K, Serke H, Paeschke S, Stockinger M, Klöting N, Blüher M, Dorn M, Classen J, Thiery J, Bechmann I, Toyka KV, Nowicki M.

Metabolism. 2016 Apr;65(4):391-405. doi: 10.1016/j.metabol.2015.11.002. Epub 2015 Nov 6.

PMID:
26975531
14.

Establishment of a rat model of type II diabetic neuropathic pain.

Dang JK, Wu Y, Cao H, Meng B, Huang CC, Chen G, Li J, Song XJ, Lian QQ.

Pain Med. 2014 Apr;15(4):637-46. doi: 10.1111/pme.12387_1.

PMID:
24716590
15.

Inhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice.

Bravard A, Bonnard C, Durand A, Chauvin MA, Favier R, Vidal H, Rieusset J.

Am J Physiol Endocrinol Metab. 2011 Mar;300(3):E581-91. doi: 10.1152/ajpendo.00455.2010. Epub 2011 Jan 11.

16.

Cardiac contractile function and mitochondrial respiration in diabetes-related mouse models.

Marciniak C, Marechal X, Montaigne D, Neviere R, Lancel S.

Cardiovasc Diabetol. 2014 Aug 21;13:118. doi: 10.1186/s12933-014-0118-7.

17.

Mitochondrial transcription factor A regulation of mitochondrial degeneration in experimental diabetic neuropathy.

Chandrasekaran K, Anjaneyulu M, Inoue T, Choi J, Sagi AR, Chen C, Ide T, Russell JW.

Am J Physiol Endocrinol Metab. 2015 Jul 15;309(2):E132-41. doi: 10.1152/ajpendo.00620.2014. Epub 2015 May 5.

18.

Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

Yuan F, Lei Y, Wang Q, Esberg LB, Huang Z, Scott GI, Li X, Ren J.

Toxicol Lett. 2015 Mar 18;233(3):267-77. doi: 10.1016/j.toxlet.2014.12.018. Epub 2014 Dec 27.

PMID:
25549548
19.

Chronic inhibition of phosphodiesterase 5 with tadalafil attenuates mitochondrial dysfunction in type 2 diabetic hearts: potential role of NO/SIRT1/PGC-1α signaling.

Koka S, Aluri HS, Xi L, Lesnefsky EJ, Kukreja RC.

Am J Physiol Heart Circ Physiol. 2014 Jun 1;306(11):H1558-68. doi: 10.1152/ajpheart.00865.2013. Epub 2014 Apr 11.

20.

Impaired mitochondrial biogenesis due to dysfunctional adiponectin-AMPK-PGC-1α signaling contributing to increased vulnerability in diabetic heart.

Yan W, Zhang H, Liu P, Wang H, Liu J, Gao C, Liu Y, Lian K, Yang L, Sun L, Guo Y, Zhang L, Dong L, Lau WB, Gao E, Gao F, Xiong L, Wang H, Qu Y, Tao L.

Basic Res Cardiol. 2013 May;108(3):329. doi: 10.1007/s00395-013-0329-1. Epub 2013 Mar 5.

PMID:
23460046

Supplemental Content

Support Center