Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Tonotopic alterations in inhibitory input to the medial nucleus of the trapezoid body in a mouse model of Fragile X syndrome.

McCullagh EA, Salcedo E, Huntsman MM, Klug A.

J Comp Neurol. 2017 Nov 1;525(16):3543-3562. doi: 10.1002/cne.24290. Epub 2017 Aug 15.

2.

Abnormal neuronal morphology and neurochemistry in the auditory brainstem of Fmr1 knockout rats.

Ruby K, Falvey K, Kulesza RJ.

Neuroscience. 2015 Sep 10;303:285-98. doi: 10.1016/j.neuroscience.2015.06.061. Epub 2015 Jul 9.

PMID:
26166728
3.

Deletion of Fmr1 alters function and synaptic inputs in the auditory brainstem.

Rotschafer SE, Marshak S, Cramer KS.

PLoS One. 2015 Feb 13;10(2):e0117266. doi: 10.1371/journal.pone.0117266. eCollection 2015.

4.

Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

Garcia-Pino E, Gessele N, Koch U.

J Neurosci. 2017 Aug 2;37(31):7403-7419. doi: 10.1523/JNEUROSCI.2310-16.2017. Epub 2017 Jul 3.

5.

Neurotransmitter- and Release-Mode-Specific Modulation of Inhibitory Transmission by Group I Metabotropic Glutamate Receptors in Central Auditory Neurons of the Mouse.

Curry RJ, Peng K, Lu Y.

J Neurosci. 2018 Sep 19;38(38):8187-8199. doi: 10.1523/JNEUROSCI.0603-18.2018. Epub 2018 Aug 9.

6.

Inhibitory projections from the ventral nucleus of the trapezoid body to the medial nucleus of the trapezoid body in the mouse.

Albrecht O, Dondzillo A, Mayer F, Thompson JA, Klug A.

Front Neural Circuits. 2014 Jul 29;8:83. doi: 10.3389/fncir.2014.00083. eCollection 2014.

7.

Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of Fmr1 Knockout Mice.

Rotschafer SE, Cramer KS.

eNeuro. 2017 Dec 27;4(6). pii: ENEURO.0264-17.2017. doi: 10.1523/ENEURO.0264-17.2017. eCollection 2017 Nov-Dec.

8.

Sound localization ability and glycinergic innervation of the superior olivary complex persist after genetic deletion of the medial nucleus of the trapezoid body.

Jalabi W, Kopp-Scheinpflug C, Allen PD, Schiavon E, DiGiacomo RR, Forsythe ID, Maricich SM.

J Neurosci. 2013 Sep 18;33(38):15044-9. doi: 10.1523/JNEUROSCI.2604-13.2013.

9.

Distribution of glutamatergic, GABAergic, and glycinergic neurons in the auditory pathways of macaque monkeys.

Ito T, Inoue K, Takada M.

Neuroscience. 2015 Dec 3;310:128-51. doi: 10.1016/j.neuroscience.2015.09.041. Epub 2015 Sep 29.

PMID:
26391919
10.

Subtle differences in synaptic transmission in medial nucleus of trapezoid body neurons between wild-type and Fmr1 knockout mice.

Lu Y.

Brain Res. 2019 Aug 15;1717:95-103. doi: 10.1016/j.brainres.2019.04.006. Epub 2019 Apr 17.

PMID:
31004576
11.

Abnormal striatal GABA transmission in the mouse model for the fragile X syndrome.

Centonze D, Rossi S, Mercaldo V, Napoli I, Ciotti MT, De Chiara V, Musella A, Prosperetti C, Calabresi P, Bernardi G, Bagni C.

Biol Psychiatry. 2008 May 15;63(10):963-73. Epub 2007 Oct 29.

PMID:
18028882
12.

Excitation by Axon Terminal GABA Spillover in a Sound Localization Circuit.

Weisz CJ, Rubio ME, Givens RS, Kandler K.

J Neurosci. 2016 Jan 20;36(3):911-25. doi: 10.1523/JNEUROSCI.1132-15.2016.

13.

Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway.

Alamilla J, Gillespie DC.

PLoS One. 2013 Sep 19;8(9):e75688. doi: 10.1371/journal.pone.0075688. eCollection 2013.

14.

Fragile X mental retardation protein is required for rapid experience-dependent regulation of the potassium channel Kv3.1b.

Strumbos JG, Brown MR, Kronengold J, Polley DB, Kaczmarek LK.

J Neurosci. 2010 Aug 4;30(31):10263-71. doi: 10.1523/JNEUROSCI.1125-10.2010.

15.

Deficits in the activity of presynaptic γ-aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome.

Kang JY, Chadchankar J, Vien TN, Mighdoll MI, Hyde TM, Mather RJ, Deeb TZ, Pangalos MN, Brandon NJ, Dunlop J, Moss SJ.

J Biol Chem. 2017 Apr 21;292(16):6621-6632. doi: 10.1074/jbc.M116.772541. Epub 2017 Feb 17.

16.

Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.

Koka K, Tollin DJ.

Front Neural Circuits. 2014 Dec 16;8:144. doi: 10.3389/fncir.2014.00144. eCollection 2014.

17.

Inhibitory synapses in the developing auditory system are glutamatergic.

Gillespie DC, Kim G, Kandler K.

Nat Neurosci. 2005 Mar;8(3):332-8. Epub 2005 Jan 30.

PMID:
15746915
18.
19.

VGLUT3 does not synergize GABA/glycine release during functional refinement of an inhibitory auditory circuit.

Case DT, Alamilla J, Gillespie DC.

Front Neural Circuits. 2014 Nov 26;8:140. doi: 10.3389/fncir.2014.00140. eCollection 2014.

20.

Development of glycinergic innervation to the murine LSO and SPN in the presence and absence of the MNTB.

Altieri SC, Zhao T, Jalabi W, Maricich SM.

Front Neural Circuits. 2014 Sep 12;8:109. doi: 10.3389/fncir.2014.00109. eCollection 2014.

Supplemental Content

Support Center