Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 123

1.

Effect of schwertmannite and jarosite on the formation of hypoxic blackwater during inundation of grass material.

Vithana CL, Sullivan LA, Shepherd T.

Water Res. 2017 Nov 1;124:1-10. doi: 10.1016/j.watres.2017.07.039. Epub 2017 Jul 17.

PMID:
28734957
2.

Antimony and arsenic partitioning during Fe2+-induced transformation of jarosite under acidic conditions.

Karimian N, Johnston SG, Burton ED.

Chemosphere. 2018 Mar;195:515-523. doi: 10.1016/j.chemosphere.2017.12.106. Epub 2017 Dec 27.

PMID:
29277031
3.

Phosphate loading alters schwertmannite transformation rates and pathways during microbial reduction.

Schoepfer VA, Burton ED, Johnston SG, Kraal P.

Sci Total Environ. 2019 Mar 20;657:770-780. doi: 10.1016/j.scitotenv.2018.12.082. Epub 2018 Dec 7.

PMID:
30677942
4.

Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine.

Bao Y, Guo C, Lu G, Yi X, Wang H, Dang Z.

Sci Total Environ. 2018 Mar;616-617:647-657. doi: 10.1016/j.scitotenv.2017.10.273. Epub 2017 Nov 2.

PMID:
29103647
5.

Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.

Burton ED, Johnston SG, Kraal P, Bush RT, Claff S.

Environ Sci Technol. 2013 Mar 5;47(5):2221-9. doi: 10.1021/es303867t. Epub 2013 Feb 15.

PMID:
23373718
6.

Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture.

Zeng Y, Wang H, Guo C, Wan J, Fan C, Reinfelder JR, Lu G, Wu F, Huang W, Dang Z.

Environ Pollut. 2018 Nov;242(Pt A):738-748. doi: 10.1016/j.envpol.2018.07.024. Epub 2018 Jul 12.

PMID:
30031307
7.

Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications.

Asta MP, Cama J, Martínez M, Giménez J.

J Hazard Mater. 2009 Nov 15;171(1-3):965-72. doi: 10.1016/j.jhazmat.2009.06.097. Epub 2009 Jun 25.

PMID:
19628332
8.

Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions.

Jones FS, Bigham JM, Gramp JP, Tuovinen OH.

Mater Sci Eng C Mater Biol Appl. 2014 Nov;44:391-9. doi: 10.1016/j.msec.2014.08.043. Epub 2014 Aug 27.

PMID:
25280720
9.

Phosphate-Imposed Constraints on Schwertmannite Stability under Reducing Conditions.

Schoepfer VA, Burton ED, Johnston SG, Kraal P.

Environ Sci Technol. 2017 Sep 5;51(17):9739-9746. doi: 10.1021/acs.est.7b02103. Epub 2017 Aug 17.

PMID:
28766328
10.

Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite.

Burton ED, Johnston SG, Watling K, Bush RT, Keene AF, Sullivan LA.

Environ Sci Technol. 2010 Mar 15;44(6):2016-21. doi: 10.1021/es903424h.

PMID:
20148551
11.

Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms.

Fan C, Guo C, Zhang J, Ding C, Li X, Reinfelder JR, Lu G, Shi Z, Dang Z.

J Environ Sci (China). 2019 Jun;80:218-228. doi: 10.1016/j.jes.2018.12.015. Epub 2018 Dec 29.

PMID:
30952339
12.

Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite.

Karimian N, Johnston SG, Burton ED.

Environ Sci Technol. 2017 Apr 18;51(8):4259-4268. doi: 10.1021/acs.est.6b05335. Epub 2017 Apr 5.

PMID:
28347133
14.

[Effect of temperature on activity of Acidithiobacillus ferrooxidan and formation of biogenic secondary iron minerals].

Song YW, Zhao BW, Huo MB, Cui CH, Zhou LX.

Huan Jing Ke Xue. 2013 Aug;34(8):3264-71. Chinese.

PMID:
24191578
15.

Chromium(III) substitution inhibits the Fe(II)-accelerated transformation of schwertmannite.

Choppala G, Burton ED.

PLoS One. 2018 Dec 5;13(12):e0208355. doi: 10.1371/journal.pone.0208355. eCollection 2018.

16.

Influence of copper recovery on the water quality of the acidic Berkeley Pit lake, Montana, U.S.A.

Tucci NJ, Gammons CH.

Environ Sci Technol. 2015 Apr 7;49(7):4081-8. doi: 10.1021/es504916n. Epub 2015 Mar 12.

PMID:
25723275
17.

The nature of Schwertmannite and Jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability.

Zhu J, Gan M, Zhang D, Hu Y, Chai L.

Mater Sci Eng C Mater Biol Appl. 2013 Jul 1;33(5):2679-85. doi: 10.1016/j.msec.2013.02.026. Epub 2013 Feb 24.

PMID:
23623084
18.

Synthesis of argentojarosite with simulated bioleaching solutions produced by Acidithiobacillus ferrooxidans.

Mukherjee C, Jones FS, Bigham JM, Tuovinen OH.

Mater Sci Eng C Mater Biol Appl. 2016 Sep 1;66:164-169. doi: 10.1016/j.msec.2016.04.061. Epub 2016 Apr 20.

PMID:
27207050
19.

Role of temperature on the development of hypoxia in blackwater from grass.

Vithana CL, Sullivan LA, Shepherd T.

Sci Total Environ. 2019 Jun 1;667:152-159. doi: 10.1016/j.scitotenv.2019.02.386. Epub 2019 Feb 26.

PMID:
30826676
20.

Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2.

Wang WM, Song J, Han X.

J Hazard Mater. 2013 Nov 15;262:412-9. doi: 10.1016/j.jhazmat.2013.08.076. Epub 2013 Sep 8.

PMID:
24076478

Supplemental Content

Support Center