Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

A Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer.

McKenna MT, Weis JA, Barnes SL, Tyson DR, Miga MI, Quaranta V, Yankeelov TE.

Sci Rep. 2017 Jul 18;7(1):5725. doi: 10.1038/s41598-017-05902-z.

2.

Repression of phosphoglycerate dehydrogenase sensitizes triple-negative breast cancer to doxorubicin.

Zhang X, Bai W.

Cancer Chemother Pharmacol. 2016 Sep;78(3):655-9. doi: 10.1007/s00280-016-3117-4. Epub 2016 Jul 29.

PMID:
27473325
3.

Doxorubicin-Loaded Micelle Targeting MUC1: A Potential Therapeutic for MUC1 Triple Negative Breast Cancer Treatment.

Khondee S, Chittasupho C, Tima S, Anuchapreeda S.

Curr Drug Deliv. 2018;15(3):406-416. doi: 10.2174/1567201814666170712122508.

PMID:
28707580
4.

Cholecalciferol-PEG Conjugate Based Nanomicelles of Doxorubicin for Treatment of Triple-Negative Breast Cancer.

Kutlehria S, Behl G, Patel K, Doddapaneni R, Vhora I, Chowdhury N, Bagde A, Singh M.

AAPS PharmSciTech. 2018 Feb;19(2):792-802. doi: 10.1208/s12249-017-0885-z. Epub 2017 Oct 10.

5.

Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy.

Wang S, Zhang J, Wang Y, Chen M.

Nanomedicine. 2016 Feb;12(2):411-20. doi: 10.1016/j.nano.2015.09.014. Epub 2015 Dec 19.

PMID:
26711968
6.

Pharmacokinetic-pharmacodynamic modelling of acute N-terminal pro B-type natriuretic peptide after doxorubicin infusion in breast cancer.

Liang S, Brundage RC, Jacobson PA, Blaes A, Kirstein MN.

Br J Clin Pharmacol. 2016 Sep;82(3):773-83. doi: 10.1111/bcp.12989. Epub 2016 Jun 3.

7.

Suppression of the xCT-CD44v antiporter system sensitizes triple-negative breast cancer cells to doxorubicin.

Wang F, Yang Y.

Breast Cancer Res Treat. 2014 Aug;147(1):203-10. doi: 10.1007/s10549-014-3068-6. Epub 2014 Aug 2. Retraction in: Breast Cancer Res Treat. 2015 Jun;151(2):479.

PMID:
25085754
8.

Combined mTOR inhibitor rapamycin and doxorubicin-loaded cyclic octapeptide modified liposomes for targeting integrin α3 in triple-negative breast cancer.

Dai W, Yang F, Ma L, Fan Y, He B, He Q, Wang X, Zhang H, Zhang Q.

Biomaterials. 2014 Jul;35(20):5347-5358. doi: 10.1016/j.biomaterials.2014.03.036. Epub 2014 Apr 13.

PMID:
24726747
9.

Enhancing doxorubicin efficacy through inhibition of aspartate transaminase in triple-negative breast cancer cells.

Yang Y.

Biochem Biophys Res Commun. 2016 May 13;473(4):1295-1300. doi: 10.1016/j.bbrc.2016.04.061. Epub 2016 Apr 14.

PMID:
27086848
10.
11.

In the triple-negative breast cancer MDA-MB-231 cell line, sulforaphane enhances the intracellular accumulation and anticancer action of doxorubicin encapsulated in liposomes.

Mielczarek L, Krug P, Mazur M, Milczarek M, Chilmonczyk Z, Wiktorska K.

Int J Pharm. 2019 Mar 10;558:311-318. doi: 10.1016/j.ijpharm.2019.01.008. Epub 2019 Jan 12.

PMID:
30641176
12.

Increasing intratumor C/EBP-β LIP and nitric oxide levels overcome resistance to doxorubicin in triple negative breast cancer.

Salaroglio IC, Gazzano E, Abdullrahman A, Mungo E, Castella B, Abd-Elrahman GEFA, Massaia M, Donadelli M, Rubinstein M, Riganti C, Kopecka J.

J Exp Clin Cancer Res. 2018 Nov 27;37(1):286. doi: 10.1186/s13046-018-0967-0.

13.

CREB3L1 as a potential biomarker predicting response of triple negative breast cancer to doxorubicin-based chemotherapy.

Denard B, Jiang S, Peng Y, Ye J.

BMC Cancer. 2018 Aug 13;18(1):813. doi: 10.1186/s12885-018-4724-8.

14.

Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition.

Zhang H, Cohen AL, Krishnakumar S, Wapnir IL, Veeriah S, Deng G, Coram MA, Piskun CM, Longacre TA, Herrler M, Frimannsson DO, Telli ML, Dirbas FM, Matin AC, Dairkee SH, Larijani B, Glinsky GV, Bild AH, Jeffrey SS.

Breast Cancer Res. 2014 Apr 7;16(2):R36. doi: 10.1186/bcr3640.

15.

[Populational pharmacokinetics of doxorubicin applied to personalised its dosing in cancer patients].

Escudero-Ortiz V, Ramón-López A, Duart MA, Pérez-Ruixo JJ, Valenzuela B.

Farm Hosp. 2012 Jul-Aug;36(4):282-91. Epub 2011 Nov 29. Spanish.

PMID:
22129650
16.

Ovatodiolide sensitizes aggressive breast cancer cells to doxorubicin, eliminates their cancer stem cell-like phenotype, and reduces doxorubicin-associated toxicity.

Bamodu OA, Huang WC, Tzeng DT, Wu A, Wang LS, Yeh CT, Chao TY.

Cancer Lett. 2015 Aug 10;364(2):125-34. doi: 10.1016/j.canlet.2015.05.006. Epub 2015 May 11.

PMID:
25976769
17.

Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination.

Fonseca NA, Rodrigues AS, Rodrigues-Santos P, Alves V, Gregório AC, Valério-Fernandes Â, Gomes-da-Silva LC, Rosa MS, Moura V, Ramalho-Santos J, Simões S, Moreira JN.

Biomaterials. 2015 Nov;69:76-88. doi: 10.1016/j.biomaterials.2015.08.007. Epub 2015 Aug 6.

PMID:
26283155
18.

Novel folic acid-conjugated doxorubicin loaded β-lactoglobulin nanoparticles induce apoptosis in breast cancer cells.

Kayani Z, Bordbar AK, Firuzi O.

Biomed Pharmacother. 2018 Nov;107:945-956. doi: 10.1016/j.biopha.2018.08.047. Epub 2018 Aug 23.

PMID:
30257407
19.

Regulation of stem cells-related signaling pathways in response to doxorubicin treatment in Hs578T triple-negative breast cancer cells.

Tudoran O, Soritau O, Balacescu L, Visan S, Barbos O, Cojocneanu-Petric R, Balacescu O, Berindan-Neagoe I.

Mol Cell Biochem. 2015 Nov;409(1-2):163-76. doi: 10.1007/s11010-015-2522-z. Epub 2015 Jul 18.

PMID:
26187676
20.

MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer.

Ouyang M, Li Y, Ye S, Ma J, Lu L, Lv W, Chang G, Li X, Li Q, Wang S, Wang W.

PLoS One. 2014 May 2;9(5):e96228. doi: 10.1371/journal.pone.0096228. eCollection 2014.

Supplemental Content

Support Center