Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 188

1.

Relative cortico-subcortical shift in brain activity but preserved training-induced neural modulation in older adults during bimanual motor learning.

Santos Monteiro T, Beets IAM, Boisgontier MP, Gooijers J, Pauwels L, Chalavi S, King B, Albouy G, Swinnen SP.

Neurobiol Aging. 2017 Oct;58:54-67. doi: 10.1016/j.neurobiolaging.2017.06.004. Epub 2017 Jun 19.

PMID:
28708977
2.

Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

Gooijers J, Beets IA, Albouy G, Beeckmans K, Michiels K, Sunaert S, Swinnen SP.

Brain. 2016 Sep;139(Pt 9):2469-85. doi: 10.1093/brain/aww177. Epub 2016 Jul 19.

PMID:
27435093
3.

The neural control of bimanual movements in the elderly: Brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment.

Goble DJ, Coxon JP, Van Impe A, De Vos J, Wenderoth N, Swinnen SP.

Hum Brain Mapp. 2010 Aug;31(8):1281-95. doi: 10.1002/hbm.20943.

PMID:
20082331
4.

Striking a chord with healthy aging: memory system cooperation is related to preserved configural response learning in older adults.

Voss MW, Clark R, Freedberg M, Weng T, Hazeltine E.

Neurobiol Aging. 2018 Mar;63:44-53. doi: 10.1016/j.neurobiolaging.2017.11.001. Epub 2017 Nov 14.

PMID:
29223679
5.

Age-Related Changes in Frontal Network Structural and Functional Connectivity in Relation to Bimanual Movement Control.

Fujiyama H, Van Soom J, Rens G, Gooijers J, Leunissen I, Levin O, Swinnen SP.

J Neurosci. 2016 Feb 10;36(6):1808-22. doi: 10.1523/JNEUROSCI.3355-15.2016.

6.

Age-related variability in performance of a motor action selection task is related to differences in brain function and structure among older adults.

Stewart JC, Tran X, Cramer SC.

Neuroimage. 2014 Feb 1;86:326-34. doi: 10.1016/j.neuroimage.2013.10.016. Epub 2013 Oct 12.

7.

Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention.

Sacco K, Cauda F, D'Agata F, Mate D, Duca S, Geminiani G.

Brain Res. 2009 Nov 10;1297:124-34. doi: 10.1016/j.brainres.2009.08.049. Epub 2009 Aug 21. Erratum in: Brain Res. 2011 Jan 25;1370:254. Katiuscia, Sacco [corrected to Sacco, Katiuscia]; Franco, Cauda [corrected to Cauda, Franco]; Federico, D'Agata [corrected to D'Agata, Federico]; Davide, Mate [corrected to Mate, Davide]; Sergio, Duca [corrected to Duca, Sergio]; Giuliano, Geminiani [corre.

PMID:
19703428
8.

Reduced Neural Differentiation Between Feedback Conditions After Bimanual Coordination Training with and without Augmented Visual Feedback.

Beets IA, Gooijers J, Boisgontier MP, Pauwels L, Coxon JP, Wittenberg G, Swinnen SP.

Cereb Cortex. 2015 Jul;25(7):1958-69. doi: 10.1093/cercor/bhu005. Epub 2014 Feb 4.

PMID:
24501382
9.

Distinct neural systems underlie learning visuomotor and spatial representations of motor skills.

Parsons MW, Harrington DL, Rao SM.

Hum Brain Mapp. 2005 Mar;24(3):229-47.

PMID:
15543554
10.

Changes in brain activation during the acquisition of a new bimanual coodination task.

Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP.

Neuropsychologia. 2004;42(7):855-67.

PMID:
14998701
11.

Bimanual motor coordination in older adults is associated with increased functional brain connectivity--a graph-theoretical analysis.

Heitger MH, Goble DJ, Dhollander T, Dupont P, Caeyenberghs K, Leemans A, Sunaert S, Swinnen SP.

PLoS One. 2013 Apr 29;8(4):e62133. doi: 10.1371/journal.pone.0062133. Print 2013.

12.

Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized.

Macuga KL, Frey SH.

Neuroimage. 2012 Feb 1;59(3):2798-807. doi: 10.1016/j.neuroimage.2011.09.083. Epub 2011 Oct 8.

13.

Brain activation patterns of motor imagery reflect plastic changes associated with intensive shooting training.

Baeck JS, Kim YT, Seo JH, Ryeom HK, Lee J, Choi SM, Woo M, Kim W, Kim JG, Chang Y.

Behav Brain Res. 2012 Sep 1;234(1):26-32. doi: 10.1016/j.bbr.2012.06.001. Epub 2012 Jun 12.

PMID:
22698706
14.

The effects of memory training on behavioral and microstructural plasticity in young and older adults.

de Lange AG, BrĂ¥then ACS, Rohani DA, Grydeland H, Fjell AM, Walhovd KB.

Hum Brain Mapp. 2017 Nov;38(11):5666-5680. doi: 10.1002/hbm.23756. Epub 2017 Aug 7.

15.

Anatomy of Subcortical Structures Predicts Age-Related Differences in Skill Acquisition.

Chalavi S, Adab HZ, Pauwels L, Beets IAM, van Ruitenbeek P, Boisgontier MP, Monteiro TS, Maes C, Sunaert S, Swinnen SP.

Cereb Cortex. 2018 Feb 1;28(2):459-473. doi: 10.1093/cercor/bhw382.

PMID:
27909002
16.

Changing brain networks for visuomotor control with increased movement automaticity.

Floyer-Lea A, Matthews PM.

J Neurophysiol. 2004 Oct;92(4):2405-12.

17.

Changes in cortical, cerebellar and basal ganglia representation after comprehensive long term unilateral hand motor training.

Walz AD, Doppl K, Kaza E, Roschka S, Platz T, Lotze M.

Behav Brain Res. 2015 Feb 1;278:393-403. doi: 10.1016/j.bbr.2014.08.044. Epub 2014 Sep 3.

PMID:
25194587
18.

Integrated technology for evaluation of brain function and neural plasticity.

Rossini PM, Dal Forno G.

Phys Med Rehabil Clin N Am. 2004 Feb;15(1):263-306. Review.

PMID:
15029909
19.

The time course of task-specific memory consolidation effects in resting state networks.

Sami S, Robertson EM, Miall RC.

J Neurosci. 2014 Mar 12;34(11):3982-92. doi: 10.1523/JNEUROSCI.4341-13.2014.

20.

Higher-order cognitive training effects on processing speed-related neural activity: a randomized trial.

Motes MA, Yezhuvath US, Aslan S, Spence JS, Rypma B, Chapman SB.

Neurobiol Aging. 2018 Feb;62:72-81. doi: 10.1016/j.neurobiolaging.2017.10.003. Epub 2017 Oct 12.

Supplemental Content

Support Center