Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

MPI depletion enhances O-GlcNAcylation of p53 and suppresses the Warburg effect.

Shtraizent N, DeRossi C, Nayar S, Sachidanandam R, Katz LS, Prince A, Koh AP, Vincek A, Hadas Y, Hoshida Y, Scott DK, Eliyahu E, Freeze HH, Sadler KC, Chu J.

Elife. 2017 Jun 23;6. pii: e22477. doi: 10.7554/eLife.22477.

2.

Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells.

de Queiroz RM, Madan R, Chien J, Dias WB, Slawson C.

J Biol Chem. 2016 Sep 2;291(36):18897-914. doi: 10.1074/jbc.M116.734533. Epub 2016 Jul 11.

3.

Epithelial Mesenchymal Transition Induces Aberrant Glycosylation through Hexosamine Biosynthetic Pathway Activation.

Lucena MC, Carvalho-Cruz P, Donadio JL, Oliveira IA, de Queiroz RM, Marinho-Carvalho MM, Sola-Penna M, de Paula IF, Gondim KC, McComb ME, Costello CE, Whelan SA, Todeschini AR, Dias WB.

J Biol Chem. 2016 Jun 17;291(25):12917-29. doi: 10.1074/jbc.M116.729236. Epub 2016 Apr 18.

4.

Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification.

Kawauchi K, Araki K, Tobiume K, Tanaka N.

Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3431-6. doi: 10.1073/pnas.0813210106. Epub 2009 Feb 6.

5.

Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality.

DeRossi C, Bode L, Eklund EA, Zhang F, Davis JA, Westphal V, Wang L, Borowsky AD, Freeze HH.

J Biol Chem. 2006 Mar 3;281(9):5916-27. Epub 2005 Dec 8.

6.

A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation.

Chu J, Mir A, Gao N, Rosa S, Monson C, Sharma V, Steet R, Freeze HH, Lehrman MA, Sadler KC.

Dis Model Mech. 2013 Jan;6(1):95-105. doi: 10.1242/dmm.010116. Epub 2012 Aug 16.

7.

Cancer metabolism: cross talk between signaling and O-GlcNAcylation.

Ferrer CM, Reginato MJ.

Methods Mol Biol. 2014;1176:73-88. doi: 10.1007/978-1-4939-0992-6_7.

PMID:
25030920
8.

O-GlcNAc modifications regulate cell survival and epiboly during zebrafish development.

Webster DM, Teo CF, Sun Y, Wloga D, Gay S, Klonowski KD, Wells L, Dougan ST.

BMC Dev Biol. 2009 Apr 21;9:28. doi: 10.1186/1471-213X-9-28.

9.

Regulation of cancer metabolism by O-GlcNAcylation.

Li Z, Yi W.

Glycoconj J. 2014 Apr;31(3):185-91. doi: 10.1007/s10719-013-9515-5. Epub 2013 Dec 10. Review.

PMID:
24323367
10.

The hexosamine biosynthesis pathway and O-GlcNAcylation maintain insulin-stimulated PI3K-PKB phosphorylation and tumour cell growth after short-term glucose deprivation.

Jones DR, Keune WJ, Anderson KE, Stephens LR, Hawkins PT, Divecha N.

FEBS J. 2014 Aug;281(16):3591-608. doi: 10.1111/febs.12879. Epub 2014 Jul 14.

11.

Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-κB activity in pancreatic cancer cells.

Ma Z, Vocadlo DJ, Vosseller K.

J Biol Chem. 2013 May 24;288(21):15121-30. doi: 10.1074/jbc.M113.470047. Epub 2013 Apr 16.

12.

Mannose phosphate isomerase regulates fibroblast growth factor receptor family signaling and glioma radiosensitivity.

Cazet A, Charest J, Bennett DC, Sambrooks CL, Contessa JN.

PLoS One. 2014 Oct 14;9(10):e110345. doi: 10.1371/journal.pone.0110345. eCollection 2014.

13.

Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability.

Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, Cho JW.

Nat Cell Biol. 2006 Oct;8(10):1074-83. Epub 2006 Sep 10. Erratum in: Nat Cell Biol. 2007 Dec;9(12):1442.

PMID:
16964247
14.

O-GlcNAc in cancer biology.

Ma Z, Vosseller K.

Amino Acids. 2013 Oct;45(4):719-33. doi: 10.1007/s00726-013-1543-8. Epub 2013 Jul 9. Review.

PMID:
23836420
15.

Phosphomannose isomerase inhibitors improve N-glycosylation in selected phosphomannomutase-deficient fibroblasts.

Sharma V, Ichikawa M, He P, Scott DA, Bravo Y, Dahl R, Ng BG, Cosford ND, Freeze HH.

J Biol Chem. 2011 Nov 11;286(45):39431-8. doi: 10.1074/jbc.M111.285502. Epub 2011 Sep 26. Erratum in: J Biol Chem. 2011 Dec 16;286(50):43588. Scott, David A [added].

16.

O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway.

Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP, Peacock DL, Vocadlo DJ, Seagroves TN, Reginato MJ.

Mol Cell. 2014 Jun 5;54(5):820-31. doi: 10.1016/j.molcel.2014.04.026. Epub 2014 May 22.

17.

Critical role of O-Linked β-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis.

Lynch TP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K, Reginato MJ.

J Biol Chem. 2012 Mar 30;287(14):11070-81. doi: 10.1074/jbc.M111.302547. Epub 2012 Jan 24.

18.

CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway.

Huang Q, Li J, Xing J, Li W, Li H, Ke X, Zhang J, Ren T, Shang Y, Yang H, Jiang J, Chen Z.

J Hepatol. 2014 Oct;61(4):859-66. doi: 10.1016/j.jhep.2014.04.035. Epub 2014 May 5.

PMID:
24801417
19.

2-Deoxyglucose induces the expression of thioredoxin interacting protein (TXNIP) by increasing O-GlcNAcylation - Implications for targeting the Warburg effect in cancer cells.

Hong SY, Hagen T.

Biochem Biophys Res Commun. 2015 Oct 2;465(4):838-44. doi: 10.1016/j.bbrc.2015.08.097. Epub 2015 Aug 24.

PMID:
26315267
20.

O-GlcNAc protein modification in cancer cells increases in response to glucose deprivation through glycogen degradation.

Kang JG, Park SY, Ji S, Jang I, Park S, Kim HS, Kim SM, Yook JI, Park YI, Roth J, Cho JW.

J Biol Chem. 2009 Dec 11;284(50):34777-84. doi: 10.1074/jbc.M109.026351. Epub 2009 Oct 15.

Supplemental Content

Support Center