Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 81

1.

Gene-Specific Substitution Profiles Describe the Types and Frequencies of Amino Acid Changes during Antibody Somatic Hypermutation.

Sheng Z, Schramm CA, Kong R; NISC Comparative Sequencing Program, Mullikin JC, Mascola JR, Kwong PD, Shapiro L.

Front Immunol. 2017 May 10;8:537. doi: 10.3389/fimmu.2017.00537. eCollection 2017.

2.

Antibody-specific model of amino acid substitution for immunological inferences from alignments of antibody sequences.

Mirsky A, Kazandjian L, Anisimova M.

Mol Biol Evol. 2015 Mar;32(3):806-19. doi: 10.1093/molbev/msu340. Epub 2014 Dec 21.

3.

Different Somatic Hypermutation Levels among Antibody Subclasses Disclosed by a New Next-Generation Sequencing-Based Antibody Repertoire Analysis.

Kitaura K, Yamashita H, Ayabe H, Shini T, Matsutani T, Suzuki R.

Front Immunol. 2017 May 3;8:389. doi: 10.3389/fimmu.2017.00389. eCollection 2017.

4.

BRILIA: Integrated Tool for High-Throughput Annotation and Lineage Tree Assembly of B-Cell Repertoires.

Lee DW, Khavrutskii IV, Wallqvist A, Bavari S, Cooper CL, Chaudhury S.

Front Immunol. 2017 Jan 17;7:681. doi: 10.3389/fimmu.2016.00681. eCollection 2016.

5.

Beyond Hot Spots: Biases in Antibody Somatic Hypermutation and Implications for Vaccine Design.

Schramm CA, Douek DC.

Front Immunol. 2018 Aug 14;9:1876. doi: 10.3389/fimmu.2018.01876. eCollection 2018. Review.

6.

Ongoing somatic hypermutation of the rearranged VH but not of the V-lambda gene in EBV-transformed rheumatoid factor-producing lymphoblastoid cell line.

Chezar I, Lobel-Lavi L, Steinitz M, Laskov R.

Mol Immunol. 2008 Nov;46(1):80-90. doi: 10.1016/j.molimm.2008.07.002. Epub 2008 Aug 20.

PMID:
18718665
7.

Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes.

Yeap LS, Hwang JK, Du Z, Meyers RM, Meng FL, JakubauskaitÄ— A, Liu M, Mani V, Neuberg D, Kepler TB, Wang JH, Alt FW.

Cell. 2015 Nov 19;163(5):1124-1137. doi: 10.1016/j.cell.2015.10.042. Epub 2015 Nov 12.

8.

Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data.

Yaari G, Vander Heiden JA, Uduman M, Gadala-Maria D, Gupta N, Stern JN, O'Connor KC, Hafler DA, Laserson U, Vigneault F, Kleinstein SH.

Front Immunol. 2013 Nov 15;4:358. doi: 10.3389/fimmu.2013.00358. eCollection 2013.

9.
10.
11.

Decreased mutation frequencies among immunoglobulin G variable region genes during viremic HIV-1 infection.

Bowers E, Scamurra RW, Asrani A, Beniguel L, MaWhinney S, Keays KM, Thurn JR, Janoff EN.

PLoS One. 2014 Jan 7;9(1):e81913. doi: 10.1371/journal.pone.0081913. eCollection 2014.

12.

Mammalian cell display and somatic hypermutation in vitro for human antibody discovery.

King DJ, Bowers PM, Kehry MR, Horlick RA.

Curr Drug Discov Technol. 2014 Mar;11(1):56-64. Review.

PMID:
23978037
13.

Secondary mechanisms of diversification in the human antibody repertoire.

Briney BS, Crowe JE Jr.

Front Immunol. 2013 Mar 11;4:42. doi: 10.3389/fimmu.2013.00042. eCollection 2013.

14.

Assessing somatic hypermutation in Ramos B cells after overexpression or knockdown of specific genes.

Upton DC, Unniraman S.

J Vis Exp. 2011 Nov 1;(57):e3573. doi: 10.3791/3573.

15.

Somatic hypermutation as a generator of antinuclear antibodies in a murine model of systemic autoimmunity.

Guo W, Smith D, Aviszus K, Detanico T, Heiser RA, Wysocki LJ.

J Exp Med. 2010 Sep 27;207(10):2225-37. doi: 10.1084/jem.20092712. Epub 2010 Aug 30.

16.
17.

Large-scale analysis of somatic hypermutations in antibodies reveals which structural regions, positions and amino acids are modified to improve affinity.

Burkovitz A, Sela-Culang I, Ofran Y.

FEBS J. 2014 Jan;281(1):306-19. doi: 10.1111/febs.12597. Epub 2013 Nov 26.

18.

A Model of Somatic Hypermutation Targeting in Mice Based on High-Throughput Ig Sequencing Data.

Cui A, Di Niro R, Vander Heiden JA, Briggs AW, Adams K, Gilbert T, O'Connor KC, Vigneault F, Shlomchik MJ, Kleinstein SH.

J Immunol. 2016 Nov 1;197(9):3566-3574. Epub 2016 Oct 5.

19.

Targets of somatic hypermutation within immunoglobulin light chain genes in zebrafish.

Marianes AE, Zimmerman AM.

Immunology. 2011 Feb;132(2):240-55. doi: 10.1111/j.1365-2567.2010.03358.x. Epub 2010 Nov 11.

20.

Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles.

Gadala-Maria D, Yaari G, Uduman M, Kleinstein SH.

Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E862-70. doi: 10.1073/pnas.1417683112. Epub 2015 Feb 9.

Supplemental Content

Support Center