Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Integrated Analysis of Intracellular Dynamics of MenaINV Cancer Cells in a 3D Matrix.

Mak M, Anderson S, McDonough MC, Spill F, Kim JE, Boussommier-Calleja A, Zaman MH, Kamm RD.

Biophys J. 2017 May 9;112(9):1874-1884. doi: 10.1016/j.bpj.2017.03.030.

2.

Impact of dimensionality and network disruption on microrheology of cancer cells in 3D environments.

Mak M, Kamm RD, Zaman MH.

PLoS Comput Biol. 2014 Nov 20;10(11):e1003959. doi: 10.1371/journal.pcbi.1003959. eCollection 2014 Nov.

3.

Characterization of the mechanical properties of cancer cells in 3D matrices in response to collagen concentration and cytoskeletal inhibitors.

Kim JE, Reynolds DS, Zaman MH, Mak M.

Integr Biol (Camb). 2018 Apr 23;10(4):232-241. doi: 10.1039/c8ib00044a.

4.

In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology.

Robert D, Nguyen TH, Gallet F, Wilhelm C.

PLoS One. 2010 Apr 6;5(4):e10046. doi: 10.1371/journal.pone.0010046.

5.

Extracellular matrix stiffness and architecture govern intracellular rheology in cancer.

Baker EL, Bonnecaze RT, Zaman MH.

Biophys J. 2009 Aug 19;97(4):1013-21. doi: 10.1016/j.bpj.2009.05.054.

6.

Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential.

Gal N, Weihs D.

Cell Biochem Biophys. 2012 Jul;63(3):199-209. doi: 10.1007/s12013-012-9356-z.

PMID:
22555560
7.

Longitudinal measurement of extracellular matrix rigidity in 3D tumor models using particle-tracking microrheology.

Jones DP, Hanna W, El-Hamidi H, Celli JP.

J Vis Exp. 2014 Jun 10;(88). doi: 10.3791/51302.

8.

Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential.

Baker EL, Lu J, Yu D, Bonnecaze RT, Zaman MH.

Biophys J. 2010 Oct 6;99(7):2048-57. doi: 10.1016/j.bpj.2010.07.051.

9.

Impact of a mechanical shear stress on intracellular trafficking.

Aubertin K, Tailleur J, Wilhelm C, Gallet F.

Soft Matter. 2017 Aug 9;13(31):5298-5306. doi: 10.1039/c7sm00732a.

PMID:
28682417
10.

The role of F-actin and myosin in epithelial cell rheology.

Van Citters KM, Hoffman BD, Massiera G, Crocker JC.

Biophys J. 2006 Nov 15;91(10):3946-56. Epub 2006 Sep 1.

11.

Resolving the role of actoymyosin contractility in cell microrheology.

Hale CM, Sun SX, Wirtz D.

PLoS One. 2009 Sep 16;4(9):e7054. doi: 10.1371/journal.pone.0007054.

12.

The mechanics and fluctuation spectrum of active gels.

Levine AJ, MacKintosh FC.

J Phys Chem B. 2009 Mar 26;113(12):3820-30. doi: 10.1021/jp808192w.

PMID:
19296701
13.

Stress fluctuations and motion of cytoskeletal-bound markers.

Raupach C, Zitterbart DP, Mierke CT, Metzner C, Müller FA, Fabry B.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011918. Epub 2007 Jul 25.

PMID:
17677505
14.

Intracellular viscoelasticity of HeLa cells during cell division studied by video particle-tracking microrheology.

Chen YQ, Kuo CY, Wei MT, Wu K, Su PT, Huang CS, Chiou A.

J Biomed Opt. 2014 Jan;19(1):011008. doi: 10.1117/1.JBO.19.1.011008.

PMID:
23864037
15.

An active biopolymer network controlled by molecular motors.

Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC, Hartwig JH, Stossel TP, Weitz DA.

Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15192-7. doi: 10.1073/pnas.0903974106. Epub 2009 Aug 10.

16.

Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors.

Bruno L, Levi V, Brunstein M, Despósito MA.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 1):011912. Epub 2009 Jul 17.

PMID:
19658734
17.

A three dimensional micropatterned tumor model for breast cancer cell migration studies.

Peela N, Sam FS, Christenson W, Truong D, Watson AW, Mouneimne G, Ros R, Nikkhah M.

Biomaterials. 2016 Mar;81:72-83. doi: 10.1016/j.biomaterials.2015.11.039. Epub 2015 Dec 2.

PMID:
26724455
18.

Bif-1 suppresses breast cancer cell migration by promoting EGFR endocytic degradation.

Runkle KB, Meyerkord CL, Desai NV, Takahashi Y, Wang HG.

Cancer Biol Ther. 2012 Aug;13(10):956-66. doi: 10.4161/cbt.20951. Epub 2012 Aug 1.

19.

Multiscale modeling and mechanics of filamentous actin cytoskeleton.

Yamaoka H, Matsushita S, Shimada Y, Adachi T.

Biomech Model Mechanobiol. 2012 Mar;11(3-4):291-302. doi: 10.1007/s10237-011-0317-z. Epub 2011 May 26. Review.

PMID:
21614531
20.

Time-dependent micromechanical responses of breast cancer cells and adjacent fibroblasts to electric treatment.

Yizraeli ML, Weihs D.

Cell Biochem Biophys. 2011 Dec;61(3):605-18. doi: 10.1007/s12013-011-9244-y.

PMID:
21809158

Supplemental Content

Support Center