Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

A case with concurrent duplication, triplication, and uniparental isodisomy at 1q42.12-qter supporting microhomology-mediated break-induced replication model for replicative rearrangements.

Kohmoto T, Okamoto N, Naruto T, Murata C, Ouchi Y, Fujita N, Inagaki H, Satomura S, Okamoto N, Saito M, Masuda K, Kurahashi H, Imoto I.

Mol Cytogenet. 2017 Apr 28;10:15. doi: 10.1186/s13039-017-0316-6. eCollection 2017.

2.

Concurrent triplication and uniparental isodisomy: evidence for microhomology-mediated break-induced replication model for genomic rearrangements.

Sahoo T, Wang JC, Elnaggar MM, Sanchez-Lara P, Ross LP, Mahon LW, Hafezi K, Deming A, Hinman L, Bruno Y, Bartley JA, Liehr T, Anguiano A, Jones M.

Eur J Hum Genet. 2015 Jan;23(1):61-6. doi: 10.1038/ejhg.2014.53. Epub 2014 Apr 9.

3.

Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome.

Carvalho CMB, Coban-Akdemir Z, Hijazi H, Yuan B, Pendleton M, Harrington E, Beaulaurier J, Juul S, Turner DJ, Kanchi RS, Jhangiani SN, Muzny DM, Gibbs RA; Baylor-Hopkins Center for Mendelian Genomics, Stankiewicz P, Belmont JW, Shaw CA, Cheung SW, Hanchard NA, Sutton VR, Bader PI, Lupski JR.

Genome Med. 2019 Apr 23;11(1):25. doi: 10.1186/s13073-019-0633-y.

4.

Complex genomic rearrangements at the PLP1 locus include triplication and quadruplication.

Beck CR, Carvalho CM, Banser L, Gambin T, Stubbolo D, Yuan B, Sperle K, McCahan SM, Henneke M, Seeman P, Garbern JY, Hobson GM, Lupski JR.

PLoS Genet. 2015 Mar 6;11(3):e1005050. doi: 10.1371/journal.pgen.1005050. eCollection 2015 Mar.

5.

Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome.

Carvalho CM, Ramocki MB, Pehlivan D, Franco LM, Gonzaga-Jauregui C, Fang P, McCall A, Pivnick EK, Hines-Dowell S, Seaver LH, Friehling L, Lee S, Smith R, Del Gaudio D, Withers M, Liu P, Cheung SW, Belmont JW, Zoghbi HY, Hastings PJ, Lupski JR.

Nat Genet. 2011 Oct 2;43(11):1074-81. doi: 10.1038/ng.944.

6.

A unique case of de novo 5q33.3-q34 triplication with uniparental isodisomy of 5q34-qter.

Fujita A, Suzumura H, Nakashima M, Tsurusaki Y, Saitsu H, Harada N, Matsumoto N, Miyake N.

Am J Med Genet A. 2013 Aug;161A(8):1904-9. doi: 10.1002/ajmg.a.36026. Epub 2013 Jul 4.

PMID:
23824987
7.

Absence of heterozygosity due to template switching during replicative rearrangements.

Carvalho CM, Pfundt R, King DA, Lindsay SJ, Zuccherato LW, Macville MV, Liu P, Johnson D, Stankiewicz P, Brown CW; DDD Study, Shaw CA, Hurles ME, Ira G, Hastings PJ, Brunner HG, Lupski JR.

Am J Hum Genet. 2015 Apr 2;96(4):555-64. doi: 10.1016/j.ajhg.2015.01.021. Epub 2015 Mar 19.

8.

Pelizaeus-Merzbacher disease caused by a duplication-inverted triplication-duplication in chromosomal segments including the PLP1 region.

Shimojima K, Mano T, Kashiwagi M, Tanabe T, Sugawara M, Okamoto N, Arai H, Yamamoto T.

Eur J Med Genet. 2012 Jun;55(6-7):400-3. doi: 10.1016/j.ejmg.2012.02.013. Epub 2012 Mar 21.

PMID:
22490426
9.

Dissecting the structure and mechanism of a complex duplication-triplication rearrangement in the DMD gene.

Ishmukhametova A, Chen JM, Bernard R, de Massy B, Baudat F, Boyer A, Méchin D, Thorel D, Chabrol B, Vincent MC, Khau Van Kien P, Claustres M, Tuffery-Giraud S.

Hum Mutat. 2013 Aug;34(8):1080-4. doi: 10.1002/humu.22353. Epub 2013 Jun 3.

PMID:
23649991
10.

Translesion Polymerases Drive Microhomology-Mediated Break-Induced Replication Leading to Complex Chromosomal Rearrangements.

Sakofsky CJ, Ayyar S, Deem AK, Chung WH, Ira G, Malkova A.

Mol Cell. 2015 Dec 17;60(6):860-72. doi: 10.1016/j.molcel.2015.10.041. Epub 2015 Dec 6.

11.

The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans.

Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR.

Nat Genet. 2009 Jul;41(7):849-53. doi: 10.1038/ng.399. Epub 2009 Jun 21.

12.

Two mosaic terminal inverted duplications arising post-zygotically: Evidence for possible formation of neo-telomeres.

Daniel A, St Heaps L, Sylvester D, Diaz S, Peters G.

Cell Chromosome. 2008 Mar 10;7:1. doi: 10.1186/1475-9268-7-1.

13.

Inverted low-copy repeats and genome instability--a genome-wide analysis.

Dittwald P, Gambin T, Gonzaga-Jauregui C, Carvalho CM, Lupski JR, Stankiewicz P, Gambin A.

Hum Mutat. 2013 Jan;34(1):210-20. doi: 10.1002/humu.22217. Epub 2012 Oct 11.

14.

FoSTeS, MMBIR and NAHR at the human proximal Xp region and the mechanisms of human Xq isochromosome formation.

Koumbaris G, Hatzisevastou-Loukidou H, Alexandrou A, Ioannides M, Christodoulou C, Fitzgerald T, Rajan D, Clayton S, Kitsiou-Tzeli S, Vermeesch JR, Skordis N, Antoniou P, Kurg A, Georgiou I, Carter NP, Patsalis PC.

Hum Mol Genet. 2011 May 15;20(10):1925-36. doi: 10.1093/hmg/ddr074. Epub 2011 Feb 24.

15.

De novo 11q13.4q14.3 tetrasomy with uniparental isodisomy for 11q14.3qter.

Xiao B, Xu H, Ye H, Hu Q, Chen Y, Qiu W.

Am J Med Genet A. 2015 Oct;167A(10):2327-33. doi: 10.1002/ajmg.a.37179. Epub 2015 Jun 10.

PMID:
26061664
16.

Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain.

Verdin H, D'haene B, Beysen D, Novikova Y, Menten B, Sante T, Lapunzina P, Nevado J, Carvalho CM, Lupski JR, De Baere E.

PLoS Genet. 2013;9(3):e1003358. doi: 10.1371/journal.pgen.1003358. Epub 2013 Mar 14.

17.

Molecular cytogenetic characterisation of a mosaic add(12)(p13.3) with an inv dup(3)(q26.31 --> qter) detected in an autistic boy.

Carreira IM, Melo JB, Rodrigues C, Backx L, Vermeesch J, Weise A, Kosyakova N, Oliveira G, Matoso E.

Mol Cytogenet. 2009 Aug 4;2:16. doi: 10.1186/1755-8166-2-16.

18.

A familial inverted duplication/deletion of 2p25.1-25.3 provides new clues on the genesis of inverted duplications.

Bonaglia MC, Giorda R, Massagli A, Galluzzi R, Ciccone R, Zuffardi O.

Eur J Hum Genet. 2009 Feb;17(2):179-86. doi: 10.1038/ejhg.2008.160. Epub 2008 Sep 24.

19.

Copy-number gains of HUWE1 due to replication- and recombination-based rearrangements.

Froyen G, Belet S, Martinez F, Santos-Rebouças CB, Declercq M, Verbeeck J, Donckers L, Berland S, Mayo S, Rosello M, Pimentel MM, Fintelman-Rodrigues N, Hovland R, Rodrigues dos Santos S, Raymond FL, Bose T, Corbett MA, Sheffield L, van Ravenswaaij-Arts CM, Dijkhuizen T, Coutton C, Satre V, Siu V, Marynen P.

Am J Hum Genet. 2012 Aug 10;91(2):252-64. doi: 10.1016/j.ajhg.2012.06.010. Epub 2012 Jul 26.

20.

Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements.

Liu P, Erez A, Nagamani SC, Dhar SU, Kołodziejska KE, Dharmadhikari AV, Cooper ML, Wiszniewska J, Zhang F, Withers MA, Bacino CA, Campos-Acevedo LD, Delgado MR, Freedenberg D, Garnica A, Grebe TA, Hernández-Almaguer D, Immken L, Lalani SR, McLean SD, Northrup H, Scaglia F, Strathearn L, Trapane P, Kang SH, Patel A, Cheung SW, Hastings PJ, Stankiewicz P, Lupski JR, Bi W.

Cell. 2011 Sep 16;146(6):889-903. doi: 10.1016/j.cell.2011.07.042.

Supplemental Content

Support Center