Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 120

1.

Prediction of post-translational modification sites using multiple kernel support vector machine.

Wang B, Wang M, Li A.

PeerJ. 2017 Apr 27;5:e3261. doi: 10.7717/peerj.3261. eCollection 2017.

2.
3.

Prediction of posttranslational modification sites from amino acid sequences with kernel methods.

Xu Y, Wang X, Wang Y, Tian Y, Shao X, Wu LY, Deng N.

J Theor Biol. 2014 Mar 7;344:78-87. doi: 10.1016/j.jtbi.2013.11.012. Epub 2013 Nov 27.

PMID:
24291233
4.

PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile.

Liu Y, Wang M, Xi J, Luo F, Li A.

Int J Biol Sci. 2018 May 22;14(8):946-956. doi: 10.7150/ijbs.24121. eCollection 2018.

5.

Probabilistic Prediction of Protein Phosphorylation Sites Using Classification Relevance Units Machines.

Menor M, Baek K, Poisson G.

ACM SIGAPP Appl Comput Rev. 2012 Dec 1;12(4):8-20.

6.

Improved prediction of lysine acetylation by support vector machines.

Li S, Li H, Li M, Shyr Y, Xie L, Li Y.

Protein Pept Lett. 2009;16(8):977-83.

PMID:
19689425
7.

A novel network-based computational method to predict protein phosphorylation on tyrosine sites.

Wang B, Wang M, Jiang Y, Sun D, Xu X.

J Bioinform Comput Biol. 2015 Dec;13(6):1542005. doi: 10.1142/S0219720015420056.

PMID:
26781824
8.
9.

Prediction of Protein Acetylation Sites using Kernel Naive Bayes Classifier Based on Protein Sequences Profiling.

Ahmed MS, Shahjaman M, Kabir E, Kamruzzaman M.

Bioinformation. 2018 May 31;14(5):213-218. doi: 10.6026/97320630014213. eCollection 2018.

10.

Protein subcellular localization prediction using multiple kernel learning based support vector machine.

Hasan MA, Ahmad S, Molla MK.

Mol Biosyst. 2017 Mar 28;13(4):785-795. doi: 10.1039/c6mb00860g.

PMID:
28247893
11.

Computational Prediction and Analysis for Tyrosine Post-Translational Modifications via Elastic Net.

Cao M, Chen G, Wang L, Wen P, Shi S.

J Chem Inf Model. 2018 Jun 25;58(6):1272-1281. doi: 10.1021/acs.jcim.7b00688. Epub 2018 May 18.

PMID:
29775287
12.

PostMod: sequence based prediction of kinase-specific phosphorylation sites with indirect relationship.

Jung I, Matsuyama A, Yoshida M, Kim D.

BMC Bioinformatics. 2010 Jan 18;11 Suppl 1:S10. doi: 10.1186/1471-2105-11-S1-S10.

13.

Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.

Ruan P, Hayashida M, Akutsu T, Vert JP.

BMC Bioinformatics. 2018 Feb 19;19(Suppl 1):39. doi: 10.1186/s12859-018-2017-5.

14.

Adaptive diffusion kernel learning from biological networks for protein function prediction.

Sun L, Ji S, Ye J.

BMC Bioinformatics. 2008 Mar 25;9:162. doi: 10.1186/1471-2105-9-162.

15.

Sepsis mortality prediction with the Quotient Basis Kernel.

Ribas Ripoll VJ, Vellido A, Romero E, Ruiz-Rodríguez JC.

Artif Intell Med. 2014 May;61(1):45-52. doi: 10.1016/j.artmed.2014.03.004. Epub 2014 Mar 27.

PMID:
24726036
16.

Prediction of protein binding sites in protein structures using hidden Markov support vector machine.

Liu B, Wang X, Lin L, Tang B, Dong Q, Wang X.

BMC Bioinformatics. 2009 Nov 20;10:381. doi: 10.1186/1471-2105-10-381.

17.

iMulti-HumPhos: a multi-label classifier for identifying human phosphorylated proteins using multiple kernel learning based support vector machines.

Hasan MAM, Ahmad S, Molla MKI.

Mol Biosyst. 2017 Jul 25;13(8):1608-1618. doi: 10.1039/c7mb00180k.

PMID:
28682387
18.

Robust and accurate prediction of noncoding RNAs from aligned sequences.

Saito Y, Sato K, Sakakibara Y.

BMC Bioinformatics. 2010 Oct 15;11 Suppl 7:S3. doi: 10.1186/1471-2105-11-S7-S3.

19.

Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects.

Wassermann AM, Geppert H, Bajorath J.

J Chem Inf Model. 2009 Oct;49(10):2155-67. doi: 10.1021/ci9002624.

PMID:
19780576
20.

White box radial basis function classifiers with component selection for clinical prediction models.

Van Belle V, Lisboa P.

Artif Intell Med. 2014 Jan;60(1):53-64. doi: 10.1016/j.artmed.2013.10.001. Epub 2013 Oct 18.

PMID:
24262978

Supplemental Content

Support Center