Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Comparative Genomics Analysis of a New Exiguobacterium Strain from Salar de Huasco Reveals a Repertoire of Stress-Related Genes and Arsenic Resistance.

Castro-Severyn J, Remonsellez F, Valenzuela SL, Salinas C, Fortt J, Aguilar P, Pardo-Esté C, Dorador C, Quatrini R, Molina F, Aguayo D, Castro-Nallar E, Saavedra CP.

Front Microbiol. 2017 Mar 21;8:456. doi: 10.3389/fmicb.2017.00456. eCollection 2017.

2.

Characterization and Salt Response in Recurrent Halotolerant Exiguobacterium sp. SH31 Isolated From Sediments of Salar de Huasco, Chilean Altiplano.

Remonsellez F, Castro-Severyn J, Pardo-Esté C, Aguilar P, Fortt J, Salinas C, Barahona S, León J, Fuentes B, Areche C, Hernández KL, Aguayo D, Saavedra CP.

Front Microbiol. 2018 Sep 20;9:2228. doi: 10.3389/fmicb.2018.02228. eCollection 2018.

3.

Proteomic approach of adaptive response to arsenic stress in Exiguobacterium sp. S17, an extremophile strain isolated from a high-altitude Andean Lake stromatolite.

Belfiore C, Ordoñez OF, Farías ME.

Extremophiles. 2013 May;17(3):421-31. doi: 10.1007/s00792-013-0523-y. Epub 2013 Mar 24.

PMID:
23525943
4.

The Complete Genome and Physiological Analysis of the Eurythermal Firmicute Exiguobacterium chiriqhucha Strain RW2 Isolated From a Freshwater Microbialite, Widely Adaptable to Broad Thermal, pH, and Salinity Ranges.

White RA 3rd, Soles SA, Gavelis G, Gosselin E, Slater GF, Lim DSS, Leander B, Suttle CA.

Front Microbiol. 2019 Jan 8;9:3189. doi: 10.3389/fmicb.2018.03189. eCollection 2018.

5.

Signature Arsenic Detoxification Pathways in Halomonas sp. Strain GFAJ-1.

Wu S, Wang L, Gan R, Tong T, Bian H, Li Z, Du S, Deng Z, Chen S.

MBio. 2018 May 1;9(3). pii: e00515-18. doi: 10.1128/mBio.00515-18.

6.

Draft genome sequence of Exiguobacterium aurantiacum strain PN47 isolate from saline ponds, known as "Salar del Huasco", located in the Altiplano in the North of Chile.

Strahsburger E, Zapata F, Pedroso I, Fuentes D, Tapia P, Ponce R, Valdes J.

Braz J Microbiol. 2018 Jan - Mar;49(1):7-9. doi: 10.1016/j.bjm.2017.03.011. Epub 2017 Jul 18.

7.

Hyper Accumulation of Arsenic in Mutants of Ochrobactrum tritici Silenced for Arsenite Efflux Pumps.

Sousa T, Branco R, Piedade AP, Morais PV.

PLoS One. 2015 Jul 1;10(7):e0131317. doi: 10.1371/journal.pone.0131317. eCollection 2015.

8.
9.

Draft Genome Sequence of the Polyextremophilic Exiguobacterium sp. Strain S17, Isolated from Hyperarsenic Lakes in the Argentinian Puna.

Ordoñez OF, Lanzarotti E, Kurth D, Gorriti MF, Revale S, Cortez N, Vazquez MP, Farías ME, Turjanski AG.

Genome Announc. 2013 Jul 25;1(4). pii: e00480-13. doi: 10.1128/genomeA.00480-13.

10.

The genomic sequence of Exiguobacterium chiriqhucha str. N139 reveals a species that thrives in cold waters and extreme environmental conditions.

Gutiérrez-Preciado A, Vargas-Chávez C, Reyes-Prieto M, Ordoñez OF, Santos-García D, Rosas-Pérez T, Valdivia-Anistro J, Rebollar EA, Saralegui A, Moya A, Merino E, Farías ME, Latorre A, Souza V.

PeerJ. 2017 Apr 19;5:e3162. doi: 10.7717/peerj.3162. eCollection 2017.

11.

Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales.

Li X, Zhang L, Wang G.

PLoS One. 2014 Mar 14;9(3):e92236. doi: 10.1371/journal.pone.0092236. eCollection 2014.

12.

Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation.

Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Rojas C, Seeger M.

Front Microbiol. 2018 Oct 30;9:2309. doi: 10.3389/fmicb.2018.02309. eCollection 2018. Review.

13.

Polyextremophilic Bacteria from High Altitude Andean Lakes: Arsenic Resistance Profiles and Biofilm Production.

Zannier F, Portero LR, Ordoñez OF, Martinez LJ, Farías ME, Albarracin VH.

Biomed Res Int. 2019 Feb 21;2019:1231975. doi: 10.1155/2019/1231975. eCollection 2019.

14.

Genomic responses to arsenic in the cyanobacterium Synechocystis sp. PCC 6803.

Sánchez-Riego AM, López-Maury L, Florencio FJ.

PLoS One. 2014 May 5;9(5):e96826. doi: 10.1371/journal.pone.0096826. eCollection 2014.

15.

Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni.

Wang L, Jeon B, Sahin O, Zhang Q.

Appl Environ Microbiol. 2009 Aug;75(15):5064-73. doi: 10.1128/AEM.00149-09. Epub 2009 Jun 5.

16.

Proteomics of arsenic stress in the gram-positive organism Exiguobacterium sp. PS NCIM 5463.

Sacheti P, Patil R, Dube A, Bhonsle H, Thombre D, Marathe S, Vidhate R, Wagh P, Kulkarni M, Rapole S, Gade W.

Appl Microbiol Biotechnol. 2014 Aug;98(15):6761-73. doi: 10.1007/s00253-014-5873-6. Epub 2014 Jun 17.

PMID:
24931308
17.
18.

Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics.

Cavalca L, Zanchi R, Corsini A, Colombo M, Romagnoli C, Canzi E, Andreoni V.

Syst Appl Microbiol. 2010 Apr;33(3):154-64. doi: 10.1016/j.syapm.2010.02.004. Epub 2010 Mar 20.

PMID:
20303688
19.

Bacterial heavy metal resistance: new surprises.

Silver S, Phung LT.

Annu Rev Microbiol. 1996;50:753-89. Review.

PMID:
8905098
20.

First draft genome sequence of a strain from the genus Fusibacter isolated from Salar de Ascotán in Northern Chile.

Serrano AE, Escudero LV, Tebes-Cayo C, Acosta M, Encalada O, Fernández-Moroso S, Demergasso C.

Stand Genomic Sci. 2017 Jul 24;12:43. doi: 10.1186/s40793-017-0252-4. eCollection 2017.

Supplemental Content

Support Center