Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 123

1.

Evolution of a Biomass-Fermenting Bacterium To Resist Lignin Phenolics.

Cerisy T, Souterre T, Torres-Romero I, Boutard M, Dubois I, Patrouix J, Labadie K, Berrabah W, Salanoubat M, Doring V, Tolonen AC.

Appl Environ Microbiol. 2017 May 17;83(11). pii: e00289-17. doi: 10.1128/AEM.00289-17. Print 2017 Jun 1.

2.

ABC Transporters Required for Hexose Uptake by Clostridium phytofermentans.

Cerisy T, Iglesias A, Rostain W, Boutard M, Pelle C, Perret A, Salanoubat M, Fierobe HP, Tolonen AC.

J Bacteriol. 2019 Jul 10;201(15). pii: e00241-19. doi: 10.1128/JB.00241-19. Print 2019 Aug 1.

PMID:
31109990
3.

Population level analysis of evolved mutations underlying improvements in plant hemicellulose and cellulose fermentation by Clostridium phytofermentans.

Mukherjee S, Thompson LK, Godin S, Schackwitz W, Lipzen A, Martin J, Blanchard JL.

PLoS One. 2014 Jan 22;9(1):e86731. doi: 10.1371/journal.pone.0086731. eCollection 2014.

4.

Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

Lubieniechi S, Peranantham T, Levin DB.

Recent Pat DNA Gene Seq. 2013 Apr 1;7(1):25-35. Review.

PMID:
22779440
5.

Transcriptomic and proteomic analyses of core metabolism in Clostridium termitidis CT1112 during growth on α-cellulose, xylan, cellobiose and xylose.

Munir RI, Spicer V, Krokhin OV, Shamshurin D, Zhang X, Taillefer M, Blunt W, Cicek N, Sparling R, Levin DB.

BMC Microbiol. 2016 May 23;16:91. doi: 10.1186/s12866-016-0711-x.

6.

Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass.

Baral NR, Shah A.

Appl Microbiol Biotechnol. 2014 Nov;98(22):9151-72. doi: 10.1007/s00253-014-6106-8. Epub 2014 Sep 30. Review.

PMID:
25267161
7.

Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.

Kumar R, Singh S, Singh OV.

J Ind Microbiol Biotechnol. 2008 May;35(5):377-391. doi: 10.1007/s10295-008-0327-8. Epub 2008 Mar 13. Review.

PMID:
18338189
8.

Enzyme Systems of Anaerobes for Biomass Conversion.

Munir R, Levin DB.

Adv Biochem Eng Biotechnol. 2016;156:113-138. Review.

PMID:
26907548
9.

A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose.

Liao H, Zhang XZ, Rollin JA, Zhang YH.

Biotechnol J. 2011 Nov;6(11):1409-18. doi: 10.1002/biot.201100157. Epub 2011 Aug 3.

PMID:
21751395
10.

Proteome-wide systems analysis of a cellulosic biofuel-producing microbe.

Tolonen AC, Haas W, Chilaka AC, Aach J, Gygi SP, Church GM.

Mol Syst Biol. 2011 Jan 18;7:461. doi: 10.1038/msb.2010.116.

11.

Fungal lysis by a soil bacterium fermenting cellulose.

Tolonen AC, Cerisy T, El-Sayyed H, Boutard M, Salanoubat M, Church GM.

Environ Microbiol. 2015 Aug;17(8):2618-27. doi: 10.1111/1462-2920.12495. Epub 2014 May 25.

PMID:
24798076
12.

Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

Boutard M, Cerisy T, Nogue PY, Alberti A, Weissenbach J, Salanoubat M, Tolonen AC.

PLoS Genet. 2014 Nov 13;10(11):e1004773. doi: 10.1371/journal.pgen.1004773. eCollection 2014 Nov.

13.

Genomic evaluation of Thermoanaerobacter spp. for the construction of designer co-cultures to improve lignocellulosic biofuel production.

Verbeke TJ, Zhang X, Henrissat B, Spicer V, Rydzak T, Krokhin OV, Fristensky B, Levin DB, Sparling R.

PLoS One. 2013;8(3):e59362. doi: 10.1371/journal.pone.0059362. Epub 2013 Mar 26.

14.

Investigating the Central Metabolism of Clostridium thermosuccinogenes.

Koendjbiharie JG, Wiersma K, van Kranenburg R.

Appl Environ Microbiol. 2018 Jun 18;84(13). pii: e00363-18. doi: 10.1128/AEM.00363-18. Print 2018 Jul 1.

15.

Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe "Anaerocellum thermophilum" DSM 6725.

Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MW.

Appl Environ Microbiol. 2009 Jul;75(14):4762-9. doi: 10.1128/AEM.00236-09. Epub 2009 May 22.

16.

Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review.

Kim D.

Molecules. 2018 Feb 1;23(2). pii: E309. doi: 10.3390/molecules23020309. Review.

17.

Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation.

Lee KM, Min K, Choi O, Kim KY, Woo HM, Kim Y, Han SO, Um Y.

Bioresour Technol. 2015;187:228-234. doi: 10.1016/j.biortech.2015.03.129. Epub 2015 Mar 31.

PMID:
25863199
18.

Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii.

Zurawski JV, Khatibi PA, Akinosho HO, Straub CT, Compton SH, Conway JM, Lee LL, Ragauskas AJ, Davison BH, Adams MWW, Kelly RM.

Appl Environ Microbiol. 2017 Aug 17;83(17). pii: e00969-17. doi: 10.1128/AEM.00969-17. Print 2017 Sep 1.

19.

Global repositioning of transcription start sites in a plant-fermenting bacterium.

Boutard M, Ettwiller L, Cerisy T, Alberti A, Labadie K, Salanoubat M, Schildkraut I, Tolonen AC.

Nat Commun. 2016 Dec 16;7:13783. doi: 10.1038/ncomms13783.

20.

Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks.

Boguta AM, Bringel F, Martinussen J, Jensen PR.

Microb Cell Fact. 2014 Jul 5;13(1):97. doi: 10.1186/s12934-014-0097-0.

Supplemental Content

Support Center