Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Amyloidogenicity at a Distance: How Distal Protein Regions Modulate Aggregation in Disease.

Lucato CM, Lupton CJ, Halls ML, Ellisdon AM.

J Mol Biol. 2017 May 5;429(9):1289-1304. doi: 10.1016/j.jmb.2017.03.021. Epub 2017 Mar 22. Review.

PMID:
28342736
2.

Amyloidogenicity of p53: a hidden link between protein misfolding and cancer.

Gong H, Yang X, Zhao Y, Petersen RB, Liu X, Liu Y, Huang K.

Curr Protein Pept Sci. 2015;16(2):135-46. Review.

PMID:
25692950
3.

A Population Shift between Sparsely Populated Folding Intermediates Determines Amyloidogenicity.

Karamanos TK, Pashley CL, Kalverda AP, Thompson GS, Mayzel M, Orekhov VY, Radford SE.

J Am Chem Soc. 2016 May 18;138(19):6271-80. doi: 10.1021/jacs.6b02464. Epub 2016 May 6.

4.

Autoimmune Responses to Soluble Aggregates of Amyloidogenic Proteins Involved in Neurodegenerative Diseases: Overlapping Aggregation Prone and Autoimmunogenic regions.

Kumar S, Thangakani AM, Nagarajan R, Singh SK, Velmurugan D, Gromiha MM.

Sci Rep. 2016 Feb 29;6:22258. doi: 10.1038/srep22258.

5.

Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases.

Cheng B, Gong H, Xiao H, Petersen RB, Zheng L, Huang K.

Biochim Biophys Acta. 2013 Oct;1830(10):4860-71. doi: 10.1016/j.bbagen.2013.06.029. Epub 2013 Jun 29. Review.

PMID:
23820032
6.

Misfolding of amyloidogenic proteins and their interactions with membranes.

Relini A, Marano N, Gliozzi A.

Biomolecules. 2013 Dec 27;4(1):20-55. doi: 10.3390/biom4010020. Review.

7.

A covalent homodimer probing early oligomers along amyloid aggregation.

Halabelian L, Relini A, Barbiroli A, Penco A, Bolognesi M, Ricagno S.

Sci Rep. 2015 Sep 30;5:14651. doi: 10.1038/srep14651.

8.

Protein folding, misfolding and aggregation: A tale of constructive to destructive assembly.

Khan MV, Zakariya SM, Khan RH.

Int J Biol Macromol. 2018 Jun;112:217-229. doi: 10.1016/j.ijbiomac.2018.01.099. Epub 2018 Jan 31. Review. Erratum in: Int J Biol Macromol. 2018 Aug 28;:.

PMID:
29374532
9.

Role of water in protein folding, oligomerization, amyloidosis and miniprotein.

Vajda T, Perczel A.

J Pept Sci. 2014 Oct;20(10):747-59. doi: 10.1002/psc.2671. Epub 2014 Aug 6. Review.

PMID:
25098401
10.

A simulated intermediate state for folding and aggregation provides insights into ΔN6 β2-microglobulin amyloidogenic behavior.

Estácio SG, Krobath H, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Faísca PF.

PLoS Comput Biol. 2014 May 8;10(5):e1003606. doi: 10.1371/journal.pcbi.1003606. eCollection 2014 May.

11.

Enhanced molecular mobility of ordinarily structured regions drives polyglutamine disease.

Lupton CJ, Steer DL, Wintrode PL, Bottomley SP, Hughes VA, Ellisdon AM.

J Biol Chem. 2015 Oct 2;290(40):24190-200. doi: 10.1074/jbc.M115.659532. Epub 2015 Aug 10.

12.

Camelid single-domain antibody fragments: Uses and prospects to investigate protein misfolding and aggregation, and to treat diseases associated with these phenomena.

Pain C, Dumont J, Dumoulin M.

Biochimie. 2015 Apr;111:82-106. doi: 10.1016/j.biochi.2015.01.012. Epub 2015 Feb 3. Review.

13.

How our bodies fight amyloidosis: effects of physiological factors on pathogenic aggregation of amyloidogenic proteins.

Huang L, Liu X, Cheng B, Huang K.

Arch Biochem Biophys. 2015 Feb 15;568:46-55. doi: 10.1016/j.abb.2015.01.007. Epub 2015 Jan 20. Review.

PMID:
25615529
14.

CPAD, Curated Protein Aggregation Database: A Repository of Manually Curated Experimental Data on Protein and Peptide Aggregation.

Thangakani AM, Nagarajan R, Kumar S, Sakthivel R, Velmurugan D, Gromiha MM.

PLoS One. 2016 Apr 4;11(4):e0152949. doi: 10.1371/journal.pone.0152949. eCollection 2016.

15.

Disulfide bonds in amyloidogenesis diseases related proteins.

Li Y, Yan J, Zhang X, Huang K.

Proteins. 2013 Nov;81(11):1862-73. doi: 10.1002/prot.24338. Epub 2013 Aug 19. Review.

PMID:
23760807
16.

Understanding the complex mechanisms of β2-microglobulin amyloid assembly.

Eichner T, Radford SE.

FEBS J. 2011 Oct;278(20):3868-83. doi: 10.1111/j.1742-4658.2011.08186.x. Epub 2011 Jun 13. Review.

17.

Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth.

Nors Perdersen M, Foderà V, Horvath I, van Maarschalkerweerd A, Nørgaard Toft K, Weise C, Almqvist F, Wolf-Watz M, Wittung-Stafshede P, Vestergaard B.

Sci Rep. 2015 May 28;5:10422. doi: 10.1038/srep10422. Erratum in: Sci Rep. 2015;5:15692.

18.

Possible peroxidase active site environment in amyloidogenic proteins: Native monomer or misfolded-oligomer; which one is susceptible to the enzymatic activity, with contribution of heme?

Khodarahmi R, Ashrafi-Kooshk MR, Khodarahmi S, Ghadami SA, Mostafaie A.

Int J Biol Macromol. 2015 Sep;80:293-301. doi: 10.1016/j.ijbiomac.2015.06.020. Epub 2015 Jun 26.

PMID:
26123814
19.

Modulating self-assembly of amyloidogenic proteins as a therapeutic approach for neurodegenerative diseases: strategies and mechanisms.

Liu T, Bitan G.

ChemMedChem. 2012 Mar 5;7(3):359-74. doi: 10.1002/cmdc.201100585. Epub 2012 Feb 9. Review.

PMID:
22323134
20.

A β-hairpin-binding protein for three different disease-related amyloidogenic proteins.

Shaykhalishahi H, Mirecka EA, Gauhar A, Grüning CS, Willbold D, Härd T, Stoldt M, Hoyer W.

Chembiochem. 2015 Feb 9;16(3):411-4. doi: 10.1002/cbic.201402552. Epub 2014 Dec 30.

PMID:
25557164

Supplemental Content

Support Center