Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Phosotynthesis in hemiepiphytic species of Clusia and Ficus.

Ting IP, Hann J, Holbrook NM, Putz FE, Sternberg LD, Price D, Goldstein G.

Oecologia. 1987 Dec;74(3):339-346. doi: 10.1007/BF00378927.

PMID:
28312470
2.

Short-term changes in carbon-isotope discrimination in the C3-CAM intermediate Clusia minor L. growing in Trinidad.

Borland AM, Griffiths H, Broadmeadow MS, Fordham MC, Maxwell C.

Oecologia. 1993 Sep;95(3):444-453. doi: 10.1007/BF00321001.

PMID:
28314023
3.

Photosynthesis in epiphytic and rooted Clusia rosea Jacq.

Sternberg LD, Ting IP, Price D, Hann J.

Oecologia. 1987 Jun;72(3):457-460. doi: 10.1007/BF00377579.

PMID:
28311145
4.

Is crassulacean acid metabolism activity in sympatric species of hemi-epiphytic stranglers such as Clusia related to carbon cycling as a photoprotective process?

Roberts A, Griffiths H, Borland AM, Reinert F.

Oecologia. 1996 Apr;106(1):28-38. doi: 10.1007/BF00334404.

PMID:
28307154
5.
6.

Diel leaf growth cycles in Clusia spp. are related to changes between C3 photosynthesis and crassulacean acid metabolism during development and during water stress.

Walter A, Christ MM, Rascher U, Schurr U, Osmond B.

Plant Cell Environ. 2008 Apr;31(4):484-91. doi: 10.1111/j.1365-3040.2008.01777.x. Epub 2008 Jan 8.

7.

Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia.

Barrera Zambrano VA, Lawson T, Olmos E, Fernández-García N, Borland AM.

J Exp Bot. 2014 Jul;65(13):3513-23. doi: 10.1093/jxb/eru022. Epub 2014 Feb 7.

PMID:
24510939
8.

Oxygen isotope composition of CAM and C3 Clusia species: non-steady-state dynamics control leaf water 18O enrichment in succulent leaves.

Cernusak LA, Mejia-Chang M, Winter K, Griffiths H.

Plant Cell Environ. 2008 Nov;31(11):1644-62. doi: 10.1111/j.1365-3040.2008.01868.x. Epub 2008 Sep 2.

9.

Patterns of gas exchange and organic acid oscillations in tropical trees of the genus Clusia.

Franco AC, Ball E, Lüttge U.

Oecologia. 1990 Nov;85(1):108-114. doi: 10.1007/BF00317350.

PMID:
28310962
10.
11.
13.

Inorganic carbon assimilation in the Isoetids, Isoetes lacustris L. and Lobelia dortmanna L.

Richardson K, Griffiths H, Reed ML, Raven JA, Griffiths NM.

Oecologia. 1984 Jan;61(1):115-121. doi: 10.1007/BF00379096.

PMID:
28311393
14.

Crassulacean Acid Metabolism in the Strangler Clusia rosea Jacq.

Ting IP, Lord EM, Sternberg Lda S, Deniro MJ.

Science. 1985 Sep 6;229(4717):969-71.

PMID:
17782529
15.

Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis.

Winter K, Holtum JA.

J Exp Bot. 2014 Jul;65(13):3425-41. doi: 10.1093/jxb/eru063. Epub 2014 Mar 18. Review.

PMID:
24642847
16.

Crassulacean acid metabolism in the shade. Studies on an epiphytic fern, Pyrrosia longifolia, and other rainforest species from Australia.

Winter K, Osmond CB, Hubick KT.

Oecologia. 1986 Jan;68(2):224-230. doi: 10.1007/BF00384791.

PMID:
28310131
17.

Crassulacean acid metabolism in the Basellaceae (Caryophyllales).

Holtum JAM, Hancock LP, Edwards EJ, Winter K.

Plant Biol (Stuttg). 2018 May;20(3):409-414. doi: 10.1111/plb.12698. Epub 2018 Mar 1.

PMID:
29369469
18.
19.

Temperature effects on the carbon-isotope ratio of C3, C 4 and crassulacean-acid-metabolism (CAM) plants.

Troughton JH, Card KA.

Planta. 1975 Jan;123(2):185-90. doi: 10.1007/BF00383867.

PMID:
24435085
20.

Supplemental Content

Support Center