Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 152

1.

Chemical Interface Damping Depends on Electrons Reaching the Surface.

Foerster B, Joplin A, Kaefer K, Celiksoy S, Link S, Sönnichsen C.

ACS Nano. 2017 Mar 28;11(3):2886-2893. doi: 10.1021/acsnano.6b08010. Epub 2017 Mar 17.

PMID:
28301133
2.

Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods.

Moon SW, Tsalu PV, Ha JW.

Phys Chem Chem Phys. 2018 Aug 29;20(34):22197-22202. doi: 10.1039/c8cp03231a.

PMID:
30116800
3.

Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene.

Hoggard A, Wang LY, Ma L, Fang Y, You G, Olson J, Liu Z, Chang WS, Ajayan PM, Link S.

ACS Nano. 2013 Dec 23;7(12):11209-17. doi: 10.1021/nn404985h. Epub 2013 Dec 3.

4.

Tuning Chemical Interface Damping: Interfacial Electronic Effects of Adsorbate Molecules and Sharp Tips of Single Gold Bipyramids.

Lee SY, Tsalu PV, Kim GW, Seo MJ, Hong JW, Ha JW.

Nano Lett. 2019 Apr 10;19(4):2568-2574. doi: 10.1021/acs.nanolett.9b00338. Epub 2019 Mar 13.

PMID:
30856334
5.

Single-particle correlation study: chemical interface damping induced by biotinylated proteins with sulfur in plasmonic gold nanorods.

Moon SW, Ha JW.

Phys Chem Chem Phys. 2019 Mar 27;21(13):7061-7066. doi: 10.1039/c9cp01049a.

PMID:
30874711
6.
7.

CHARGE TRANSFER. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition.

Wu K, Chen J, McBride JR, Lian T.

Science. 2015 Aug 7;349(6248):632-5. doi: 10.1126/science.aac5443.

8.

Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative.

Habteyes TG, Dhuey S, Wood E, Gargas D, Cabrini S, Schuck PJ, Alivisatos AP, Leone SR.

ACS Nano. 2012 Jun 26;6(6):5702-9. doi: 10.1021/nn301885u. Epub 2012 Jun 5.

PMID:
22646820
9.

Hot-electron nanoscopy using adiabatic compression of surface plasmons.

Giugni A, Torre B, Toma A, Francardi M, Malerba M, Alabastri A, Proietti Zaccaria R, Stockman MI, Di Fabrizio E.

Nat Nanotechnol. 2013 Nov;8(11):845-52. doi: 10.1038/nnano.2013.207. Epub 2013 Oct 20.

PMID:
24141538
10.

Influence of the capping material on pyridine-induced chemical interface damping in single gold nanorods.

Moon SW, Ha JW.

Analyst. 2019 Apr 8;144(8):2679-2683. doi: 10.1039/c9an00226j.

PMID:
30855047
11.

Impact of chemical interface damping on surface plasmon dephasing.

Therrien AJ, Kale MJ, Yuan L, Zhang C, Halas NJ, Christopher P.

Faraday Discuss. 2019 May 23;214(0):59-72. doi: 10.1039/c8fd00151k.

PMID:
30810555
12.

Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions.

Tan S, Liu L, Dai Y, Ren J, Zhao J, Petek H.

J Am Chem Soc. 2017 May 3;139(17):6160-6168. doi: 10.1021/jacs.7b01079. Epub 2017 Apr 20.

13.

Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study.

Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Reismann M, Mulvaney P, Hartland GV.

Phys Chem Chem Phys. 2006 Aug 14;8(30):3540-6. Epub 2006 May 23.

PMID:
16871343
14.

Plasmon damping depends on the chemical nature of the nanoparticle interface.

Foerster B, Spata VA, Carter EA, Sönnichsen C, Link S.

Sci Adv. 2019 Mar 22;5(3):eaav0704. doi: 10.1126/sciadv.aav0704. eCollection 2019 Mar.

15.
16.

Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au.

Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ.

Nano Lett. 2013 Jan 9;13(1):240-7. doi: 10.1021/nl303940z. Epub 2012 Dec 5.

PMID:
23194158
17.

Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance.

Hu M, Novo C, Funston A, Wang H, Staleva H, Zou S, Mulvaney P, Xia Y, Hartland GV.

J Mater Chem. 2008;18(17):1949-1960.

18.

Interfacial Construction of Plasmonic Nanostructures for the Utilization of the Plasmon-Excited Electrons and Holes.

Zhan C, Wang ZY, Zhang XG, Chen XJ, Huang YF, Hu S, Li JF, Wu DY, Moskovits M, Tian ZQ.

J Am Chem Soc. 2019 May 22;141(20):8053-8057. doi: 10.1021/jacs.9b02518. Epub 2019 May 13.

PMID:
31070906
19.

Gold Ultrathin Nanorods with Controlled Aspect Ratios and Surface Modifications: Formation Mechanism and Localized Surface Plasmon Resonance.

Takahata R, Yamazoe S, Koyasu K, Imura K, Tsukuda T.

J Am Chem Soc. 2018 May 30;140(21):6640-6647. doi: 10.1021/jacs.8b02884. Epub 2018 May 8.

PMID:
29694041
20.

Hot electron-driven hydrogen evolution using anisotropic gold nanostructure assembled monolayer MoS2.

Zhang P, Fujitsuka M, Majima T.

Nanoscale. 2017 Jan 26;9(4):1520-1526. doi: 10.1039/c6nr07740d.

PMID:
28067378

Supplemental Content

Support Center