Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

The connective tissue phenotype of glaucomatous cupping in the monkey eye - Clinical and research implications.

Yang H, Reynaud J, Lockwood H, Williams G, Hardin C, Reyes L, Stowell C, Gardiner SK, Burgoyne CF.

Prog Retin Eye Res. 2017 Jul;59:1-52. doi: 10.1016/j.preteyeres.2017.03.001. Epub 2017 Mar 12. Review.

2.

The morphological difference between glaucoma and other optic neuropathies.

Burgoyne C.

J Neuroophthalmol. 2015 Sep;35 Suppl 1:S8-S21. doi: 10.1097/WNO.0000000000000289. Review.

3.

Deformation of the early glaucomatous monkey optic nerve head connective tissue after acute IOP elevation in 3-D histomorphometric reconstructions.

Yang H, Thompson H, Roberts MD, Sigal IA, Downs JC, Burgoyne CF.

Invest Ophthalmol Vis Sci. 2011 Jan 21;52(1):345-63. doi: 10.1167/iovs.09-5122.

4.

Biomechanical aspects of axonal damage in glaucoma: A brief review.

Stowell C, Burgoyne CF, Tamm ER, Ethier CR; Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration Participants.

Exp Eye Res. 2017 Apr;157:13-19. doi: 10.1016/j.exer.2017.02.005. Epub 2017 Feb 20. Review.

5.
6.

The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change.

Yang H, Ren R, Lockwood H, Williams G, Libertiaux V, Downs C, Gardiner SK, Burgoyne CF.

Invest Ophthalmol Vis Sci. 2015 Dec;56(13):7661-78. doi: 10.1167/iovs.15-17624.

7.

The pathogenic role of transforming growth factor-β2 in glaucomatous damage to the optic nerve head.

Fuchshofer R.

Exp Eye Res. 2011 Aug;93(2):165-9. doi: 10.1016/j.exer.2010.07.014. Epub 2010 Aug 12. Review.

PMID:
20708611
8.

Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury.

Fortune B, Reynaud J, Hardin C, Wang L, Sigal IA, Burgoyne CF.

Invest Ophthalmol Vis Sci. 2016 Aug 1;57(10):4403-11. doi: 10.1167/iovs.16-20000.

9.

Alterations in the neural and connective tissue components of glaucomatous cupping after glaucoma surgery using swept-source optical coherence tomography.

Yoshikawa M, Akagi T, Hangai M, Ohashi-Ikeda H, Takayama K, Morooka S, Kimura Y, Nakano N, Yoshimura N.

Invest Ophthalmol Vis Sci. 2014 Jan 23;55(1):477-84. doi: 10.1167/iovs.13-11897.

PMID:
24398100
10.

Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma.

Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF.

Invest Ophthalmol Vis Sci. 2003 Feb;44(2):623-37.

PMID:
12556392
11.

Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma.

He L, Yang H, Gardiner SK, Williams G, Hardin C, Strouthidis NG, Fortune B, Burgoyne CF.

Invest Ophthalmol Vis Sci. 2014 Jan 29;55(1):574-86. doi: 10.1167/iovs.13-13245.

12.

3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping.

Yang H, Downs JC, Bellezza A, Thompson H, Burgoyne CF.

Invest Ophthalmol Vis Sci. 2007 Nov;48(11):5068-84.

PMID:
17962459
13.

A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma.

Burgoyne CF.

Exp Eye Res. 2011 Aug;93(2):120-32. doi: 10.1016/j.exer.2010.09.005. Epub 2010 Sep 16. Review.

14.

Cupping in the Monkey Optic Nerve Transection Model Consists of Prelaminar Tissue Thinning in the Absence of Posterior Laminar Deformation.

Ing E, Ivers KM, Yang H, Gardiner SK, Reynaud J, Cull G, Wang L, Burgoyne CF.

Invest Ophthalmol Vis Sci. 2016 May 1;57(6):2914–2927. doi: 10.1167/iovs.15-18975. Erratum in: Invest Ophthalmol Vis Sci. 2016 Jul 1;57(8):3891.

15.

Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism.

Crawford Downs J, Roberts MD, Sigal IA.

Exp Eye Res. 2011 Aug;93(2):133-40. doi: 10.1016/j.exer.2010.08.004. Epub 2010 Aug 11. Review.

16.

Distribution of damage to the entire retinal ganglion cell pathway: quantified using spectral-domain optical coherence tomography analysis in patients with glaucoma.

Lee K, Kwon YH, Garvin MK, Niemeijer M, Sonka M, Abràmoff MD.

Arch Ophthalmol. 2012 Sep;130(9):1118-26. doi: 10.1001/archophthalmol.2012.669.

17.

The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma.

Wallace DM, O'Brien CJ.

Exp Eye Res. 2016 Jan;142:102-9. doi: 10.1016/j.exer.2014.12.006. Review.

PMID:
26675406
18.

3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness.

Yang H, Downs JC, Girkin C, Sakata L, Bellezza A, Thompson H, Burgoyne CF.

Invest Ophthalmol Vis Sci. 2007 Oct;48(10):4597-607.

19.

Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement.

Wu Z, Xu G, Weinreb RN, Yu M, Leung CK.

Ophthalmology. 2015 Jul;122(7):1317-29. doi: 10.1016/j.ophtha.2015.02.035. Epub 2015 May 9.

20.

Morphologic changes in chronic high-pressure experimental glaucoma in rhesus monkeys.

Hayreh SS, Pe'er J, Zimmerman MB.

J Glaucoma. 1999 Feb;8(1):56-71.

PMID:
10084276

Supplemental Content

Support Center