Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

A Fungal N-Dimethylallyltryptophan Metabolite from Fusarium fujikuroi.

Arndt B, Janevska S, Schmid R, Hübner F, Tudzynski B, Humpf HU.

Chembiochem. 2017 May 18;18(10):899-904. doi: 10.1002/cbic.201600691. Epub 2017 Apr 13.

PMID:
28295904
2.

Production of diprenylated indole derivatives by tandem incubation of two recombinant dimethylallyltryptophan synthases.

Ruan HL, Stec E, Li SM.

Arch Microbiol. 2009 Oct;191(10):791-5. doi: 10.1007/s00203-009-0504-9. Epub 2009 Sep 1.

PMID:
19727673
3.

Potential of a 7-dimethylallyltryptophan synthase as a tool for production of prenylated indole derivatives.

Kremer A, Li SM.

Appl Microbiol Biotechnol. 2008 Jul;79(6):951-61. doi: 10.1007/s00253-008-1505-3. Epub 2008 May 15.

PMID:
18481055
4.

Genetic dissection of sesquiterpene biosynthesis by Fusarium fujikuroi.

Brock NL, Huss K, Tudzynski B, Dickschat JS.

Chembiochem. 2013 Feb 11;14(3):311-5. doi: 10.1002/cbic.201200695. Epub 2013 Jan 17.

PMID:
23335243
5.

Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites.

Wiemann P, Sieber CM, von Bargen KW, Studt L, Niehaus EM, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf HU, Güldener U, Tudzynski B.

PLoS Pathog. 2013;9(6):e1003475. doi: 10.1371/journal.ppat.1003475. Epub 2013 Jun 27.

7.
8.

Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi.

Arndt B, Studt L, Wiemann P, Osmanov H, Kleigrewe K, Köhler J, Krug I, Tudzynski B, Humpf HU.

Fungal Genet Biol. 2015 Nov;84:26-36. doi: 10.1016/j.fgb.2015.09.006. Epub 2015 Sep 14.

PMID:
26382642
9.

A 7-dimethylallyl tryptophan synthase from a fungal Neosartorya sp.: biochemical characterization and structural insight into the regioselective prenylation.

Miyamoto K, Ishikawa F, Nakamura S, Hayashi Y, Nakanishi I, Kakeya H.

Bioorg Med Chem. 2014 Apr 15;22(8):2517-28. doi: 10.1016/j.bmc.2014.02.031. Epub 2014 Mar 12.

PMID:
24657051
10.

A new member of the DMATS superfamily from Aspergillus niger catalyzes prenylations of both tyrosine and tryptophan derivatives.

Fan A, Chen H, Wu R, Xu H, Li SM.

Appl Microbiol Biotechnol. 2014 Dec;98(24):10119-29. doi: 10.1007/s00253-014-5872-7. Epub 2014 Jun 28.

PMID:
24970457
11.

Interplay between pathway-specific and global regulation of the fumonisin gene cluster in the rice pathogen Fusarium fujikuroi.

Rösler SM, Sieber CM, Humpf HU, Tudzynski B.

Appl Microbiol Biotechnol. 2016 Jul;100(13):5869-82. doi: 10.1007/s00253-016-7426-7. Epub 2016 Mar 11.

PMID:
26966024
12.

Multisite prenylation of 4-substituted tryptophans by dimethylallyltryptophan synthase.

Rudolf JD, Wang H, Poulter CD.

J Am Chem Soc. 2013 Feb 6;135(5):1895-902. doi: 10.1021/ja310734n. Epub 2013 Jan 28. Erratum in: J Am Chem Soc. 2013 Jul 24;135(29):10879.

13.

Gibepyrone Biosynthesis in the Rice Pathogen Fusarium fujikuroi Is Facilitated by a Small Polyketide Synthase Gene Cluster.

Janevska S, Arndt B, Niehaus EM, Burkhardt I, Rösler SM, Brock NL, Humpf HU, Dickschat JS, Tudzynski B.

J Biol Chem. 2016 Dec 30;291(53):27403-27420. doi: 10.1074/jbc.M116.753053. Epub 2016 Nov 17.

14.

Biological matching of chemical reactivity: pairing indole nucleophilicity with electrophilic isoprenoids.

Walsh CT.

ACS Chem Biol. 2014 Dec 19;9(12):2718-28. doi: 10.1021/cb500695k. Epub 2014 Oct 29. Review.

PMID:
25303280
15.
16.

Increasing structure diversity of prenylated diketopiperazine derivatives by using a 4-dimethylallyltryptophan synthase.

Steffan N, Li SM.

Arch Microbiol. 2009 May;191(5):461-6. doi: 10.1007/s00203-009-0467-x. Epub 2009 Mar 11.

PMID:
19277607
17.

The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria.

Metzger U, Schall C, Zocher G, Unsöld I, Stec E, Li SM, Heide L, Stehle T.

Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14309-14. doi: 10.1073/pnas.0904897106. Epub 2009 Aug 12.

18.

Phylogenetic analysis, fumonisin production and pathogenicity of Fusarium fujikuroi strains isolated from rice in the Philippines.

Cruz A, Marín P, González-Jaén MT, Aguilar KG, Cumagun CJ.

J Sci Food Agric. 2013 Sep;93(12):3032-9. doi: 10.1002/jsfa.6136. Epub 2013 Apr 22.

PMID:
23512704
19.

Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster.

Fernández-Bodega Á, Álvarez-Álvarez R, Liras P, Martín JF.

Appl Microbiol Biotechnol. 2017 Aug;101(15):6111-6121. doi: 10.1007/s00253-017-8366-6. Epub 2017 Jun 16. Erratum in: Appl Microbiol Biotechnol. 2017 Sep 12;:.

PMID:
28620689
20.

Comparative genomics of geographically distant Fusarium fujikuroi isolates revealed two distinct pathotypes correlating with secondary metabolite profiles.

Niehaus EM, Kim HK, Münsterkötter M, Janevska S, Arndt B, Kalinina SA, Houterman PM, Ahn IP, Alberti I, Tonti S, Kim DW, Sieber CMK, Humpf HU, Yun SH, Güldener U, Tudzynski B.

PLoS Pathog. 2017 Oct 26;13(10):e1006670. doi: 10.1371/journal.ppat.1006670. eCollection 2017 Oct.

Supplemental Content

Support Center