Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 124

1.

CCM-3 Promotes C. elegans Germline Development by Regulating Vesicle Trafficking Cytokinesis and Polarity.

Pal S, Lant B, Yu B, Tian R, Tong J, Krieger JR, Moran MF, Gingras AC, Derry WB.

Curr Biol. 2017 Mar 20;27(6):868-876. doi: 10.1016/j.cub.2017.02.028. Epub 2017 Mar 9.

2.

A Sterile 20 Family Kinase and Its Co-factor CCM-3 Regulate Contractile Ring Proteins on Germline Intercellular Bridges.

Rehain-Bell K, Love A, Werner ME, MacLeod I, Yates JR 3rd, Maddox AS.

Curr Biol. 2017 Mar 20;27(6):860-867. doi: 10.1016/j.cub.2017.01.058. Epub 2017 Mar 9.

3.

STRIPAK complexes: structure, biological function, and involvement in human diseases.

Hwang J, Pallas DC.

Int J Biochem Cell Biol. 2014 Feb;47:118-48. doi: 10.1016/j.biocel.2013.11.021. Epub 2013 Dec 11. Review.

4.

Differential angiogenesis function of CCM2 and CCM3 in cerebral cavernous malformations.

Zhu Y, Wu Q, Xu JF, Miller D, Sandalcioglu IE, Zhang JM, Sure U.

Neurosurg Focus. 2010 Sep;29(3):E1. doi: 10.3171/2010.5.FOCUS1090.

PMID:
20809750
5.

Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis.

Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA.

Hum Mol Genet. 2009 Mar 1;18(5):919-30. doi: 10.1093/hmg/ddn430. Epub 2008 Dec 16.

6.

Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease.

Yoruk B, Gillers BS, Chi NC, Scott IC.

Dev Biol. 2012 Feb 15;362(2):121-31. doi: 10.1016/j.ydbio.2011.12.006. Epub 2011 Dec 11.

7.

Interrogating the ccm-3 Gene Network.

Lant B, Pal S, Chapman EM, Yu B, Witvliet D, Choi S, Zhao L, Albiges-Rizo C, Faurobert E, Derry WB.

Cell Rep. 2018 Sep 11;24(11):2857-2868.e4. doi: 10.1016/j.celrep.2018.08.039.

8.

High-throughput sequencing of the entire genomic regions of CCM1/KRIT1, CCM2 and CCM3/PDCD10 to search for pathogenic deep-intronic splice mutations in cerebral cavernous malformations.

Rath M, Jenssen SE, Schwefel K, Spiegler S, Kleimeier D, Sperling C, Kaderali L, Felbor U.

Eur J Med Genet. 2017 Sep;60(9):479-484. doi: 10.1016/j.ejmg.2017.06.007. Epub 2017 Jun 20.

PMID:
28645800
9.

CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling.

Lant B, Yu B, Goudreault M, Holmyard D, Knight JD, Xu P, Zhao L, Chin K, Wallace E, Zhen M, Gingras AC, Derry WB.

Nat Commun. 2015 Mar 6;6:6449. doi: 10.1038/ncomms7449.

PMID:
25743393
10.

PAR-4/LKB1 mobilizes nonmuscle myosin through anillin to regulate C. elegans embryonic polarization and cytokinesis.

Chartier NT, Salazar Ospina DP, Benkemoun L, Mayer M, Grill SW, Maddox AS, Labbé JC.

Curr Biol. 2011 Feb 22;21(4):259-69. doi: 10.1016/j.cub.2011.01.010. Epub 2011 Jan 27.

11.

Novel CCM1, CCM2, and CCM3 mutations in patients with cerebral cavernous malformations: in-frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex.

Stahl S, Gaetzner S, Voss K, Brackertz B, Schleider E, Sürücü O, Kunze E, Netzer C, Korenke C, Finckh U, Habek M, Poljakovic Z, Elbracht M, Rudnik-Schöneborn S, Bertalanffy H, Sure U, Felbor U.

Hum Mutat. 2008 May;29(5):709-17. doi: 10.1002/humu.20712.

PMID:
18300272
12.

Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation.

Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, Liang X, Wang Z, Yuan Q, Vortmeyer A, Toomre D, Fuh G, Yan M, Kluger MS, Wu D, Min W.

Nat Med. 2016 Sep;22(9):1033-1042. doi: 10.1038/nm.4169. Epub 2016 Aug 22. Erratum in: Nat Med. 2016 Dec 6;22(12 ):1502.

13.

A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells.

Pagenstecher A, Stahl S, Sure U, Felbor U.

Hum Mol Genet. 2009 Mar 1;18(5):911-8. doi: 10.1093/hmg/ddn420. Epub 2008 Dec 16.

14.

Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus.

Liquori CL, Berg MJ, Squitieri F, Ottenbacher M, Sorlie M, Leedom TP, Cannella M, Maglione V, Ptacek L, Johnson EW, Marchuk DA.

Hum Mutat. 2006 Jan;27(1):118.

PMID:
16329096
15.

Genomic causes of multiple cerebral cavernous malformations in a Japanese population.

Tsutsumi S, Ogino I, Miyajima M, Ikeda T, Shindo N, Yasumoto Y, Ito M, Arai H.

J Clin Neurosci. 2013 May;20(5):667-9. doi: 10.1016/j.jocn.2012.05.041. Epub 2013 Feb 26.

PMID:
23485406
16.

Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis.

Fischer A, Zalvide J, Faurobert E, Albiges-Rizo C, Tournier-Lasserve E.

Trends Mol Med. 2013 May;19(5):302-8. doi: 10.1016/j.molmed.2013.02.004. Epub 2013 Mar 15. Review.

PMID:
23506982
17.

Actomyosin tube formation in polar body cytokinesis requires Anillin in C. elegans.

Dorn JF, Zhang L, Paradis V, Edoh-Bedi D, Jusu S, Maddox PS, Maddox AS.

Curr Biol. 2010 Nov 23;20(22):2046-51. doi: 10.1016/j.cub.2010.10.030. Epub 2010 Nov 4.

18.

Relevance of CCM gene polymorphisms for clinical management of sporadic cerebral cavernous malformations.

Rinaldi C, Bramanti P, Scimone C, Donato L, Alafaci C, D'Angelo R, Sidoti A.

J Neurol Sci. 2017 Sep 15;380:31-37. doi: 10.1016/j.jns.2017.06.043. Epub 2017 Jun 29.

PMID:
28870584
19.

Genetic variations within KRIT1/CCM1, MGC4607/CCM2 and PDCD10/CCM3 in a large Italian family harbouring a Krit1/CCM1 mutation.

Pileggi S, Buscone S, Ricci C, Patrosso MC, Marocchi A, Brunori P, Battistini S, Penco S.

J Mol Neurosci. 2010 Oct;42(2):235-42. doi: 10.1007/s12031-010-9360-y. Epub 2010 Apr 24.

PMID:
20419355
20.

A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease.

McDonald DA, Shenkar R, Shi C, Stockton RA, Akers AL, Kucherlapati MH, Kucherlapati R, Brainer J, Ginsberg MH, Awad IA, Marchuk DA.

Hum Mol Genet. 2011 Jan 15;20(2):211-22. doi: 10.1093/hmg/ddq433. Epub 2010 Oct 11.

Supplemental Content

Support Center