Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Crystal structure of Aquifex aeolicus σN bound to promoter DNA and the structure of σN-holoenzyme.

Campbell EA, Kamath S, Rajashankar KR, Wu M, Darst SA.

Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1805-E1814. doi: 10.1073/pnas.1619464114. Epub 2017 Feb 21.

2.

The role of region II in the RNA polymerase sigma factor sigma(N) (sigma(54)).

Southern E, Merrick M.

Nucleic Acids Res. 2000 Jul 1;28(13):2563-70. doi: 10.1093/nar/28.13.2563.

3.
5.

Structure of a ternary transcription activation complex.

Jain D, Nickels BE, Sun L, Hochschild A, Darst SA.

Mol Cell. 2004 Jan 16;13(1):45-53.

6.

Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes.

Vuthoori S, Bowers CW, McCracken A, Dombroski AJ, Hinton DM.

J Mol Biol. 2001 Jun 8;309(3):561-72.

PMID:
11397080
7.

Interactions of regulated and deregulated forms of the sigma54 holoenzyme with heteroduplex promoter DNA.

Cannon W, Wigneshweraraj SR, Buck M.

Nucleic Acids Res. 2002 Feb 15;30(4):886-93.

8.

Functionality of purified sigma(N) (sigma(54)) and a NifA-like protein from the hyperthermophile Aquifex aeolicus.

Studholme DJ, Wigneshwereraraj SR, Gallegos MT, Buck M.

J Bacteriol. 2000 Mar;182(6):1616-23.

9.

Regulatory sequences in sigma 54 localise near the start of DNA melting.

Wigneshweraraj SR, Chaney MK, Ishihama A, Buck M.

J Mol Biol. 2001 Mar 2;306(4):681-701.

PMID:
11243780
10.

Structural basis of transcription activation.

Feng Y, Zhang Y, Ebright RH.

Science. 2016 Jun 10;352(6291):1330-3. doi: 10.1126/science.aaf4417.

11.

Beta subunit residues 186-433 and 436-445 are commonly used by Esigma54 and Esigma70 RNA polymerase for open promoter complex formation.

Wigneshweraraj SR, Nechaev S, Severinov K, Buck M.

J Mol Biol. 2002 Jun 21;319(5):1067-83.

PMID:
12079348
12.
13.

Sequences in sigmaN determining holoenzyme formation and properties.

Gallegos MT, Buck M.

J Mol Biol. 1999 May 14;288(4):539-53.

PMID:
10329161
14.

X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme.

Murakami KS.

J Biol Chem. 2013 Mar 29;288(13):9126-34. doi: 10.1074/jbc.M112.430900. Epub 2013 Feb 6.

15.

Structural basis for transcription initiation by bacterial ECF σ factors.

Li L, Fang C, Zhuang N, Wang T, Zhang Y.

Nat Commun. 2019 Mar 11;10(1):1153. doi: 10.1038/s41467-019-09096-y.

16.
17.

RNA polymerase holoenzyme: structure, function and biological implications.

Borukhov S, Nudler E.

Curr Opin Microbiol. 2003 Apr;6(2):93-100. Review.

PMID:
12732296
18.

Mapping the spatial neighborhood of the regulatory 6S RNA bound to Escherichia coli RNA polymerase holoenzyme.

Steuten B, Setny P, Zacharias M, Wagner R.

J Mol Biol. 2013 Oct 9;425(19):3649-61. doi: 10.1016/j.jmb.2013.07.008. Epub 2013 Jul 15.

PMID:
23867276
19.

Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution.

Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN, Borukhov S, Yokoyama S.

Nature. 2002 Jun 13;417(6890):712-9. Epub 2002 May 8.

PMID:
12000971
20.

Amino-terminal sequences of sigmaN (sigma54) inhibit RNA polymerase isomerization.

Cannon W, Gallegos MT, Casaz P, Buck M.

Genes Dev. 1999 Feb 1;13(3):357-70.

Supplemental Content

Support Center