Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 158

1.

One-step optogenetics with multifunctional flexible polymer fibers.

Park S, Guo Y, Jia X, Choe HK, Grena B, Kang J, Park J, Lu C, Canales A, Chen R, Yim YS, Choi GB, Fink Y, Anikeeva P.

Nat Neurosci. 2017 Apr;20(4):612-619. doi: 10.1038/nn.4510. Epub 2017 Feb 20.

2.

Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.

Canales A, Park S, Kilias A, Anikeeva P.

Acc Chem Res. 2018 Apr 17;51(4):829-838. doi: 10.1021/acs.accounts.7b00558. Epub 2018 Mar 21. Review.

PMID:
29561583
3.

Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording.

Lee J, Ozden I, Song YK, Nurmikko AV.

Nat Methods. 2015 Dec;12(12):1157-62. doi: 10.1038/nmeth.3620. Epub 2015 Oct 12.

PMID:
26457862
4.

Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics.

Pisanello F, Sileo L, Oldenburg IA, Pisanello M, Martiradonna L, Assad JA, Sabatini BL, De Vittorio M.

Neuron. 2014 Jun 18;82(6):1245-54. doi: 10.1016/j.neuron.2014.04.041. Epub 2014 May 29.

5.

Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo.

Canales A, Jia X, Froriep UP, Koppes RA, Tringides CM, Selvidge J, Lu C, Hou C, Wei L, Fink Y, Anikeeva P.

Nat Biotechnol. 2015 Mar;33(3):277-84. doi: 10.1038/nbt.3093. Epub 2015 Jan 19.

PMID:
25599177
6.

A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates.

Ozden I, Wang J, Lu Y, May T, Lee J, Goo W, O'Shea DJ, Kalanithi P, Diester I, Diagne M, Deisseroth K, Shenoy KV, Nurmikko AV.

J Neurosci Methods. 2013 Sep 30;219(1):142-54. doi: 10.1016/j.jneumeth.2013.06.011. Epub 2013 Jul 15.

7.

A polymer-based neural microimplant for optogenetic applications: design and first in vivo study.

Rubehn B, Wolff SB, Tovote P, Lüthi A, Stieglitz T.

Lab Chip. 2013 Feb 21;13(4):579-88. doi: 10.1039/c2lc40874k.

PMID:
23306183
8.

An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications.

Wu F, Stark E, Im M, Cho IJ, Yoon ES, Buzsáki G, Wise KD, Yoon E.

J Neural Eng. 2013 Oct;10(5):056012. doi: 10.1088/1741-2560/10/5/056012. Epub 2013 Aug 28.

9.

Medial prefrontal D1 dopamine neurons control food intake.

Land BB, Narayanan NS, Liu RJ, Gianessi CA, Brayton CE, Grimaldi DM, Sarhan M, Guarnieri DJ, Deisseroth K, Aghajanian GK, DiLeone RJ.

Nat Neurosci. 2014 Feb;17(2):248-53. doi: 10.1038/nn.3625. Epub 2014 Jan 19.

10.

Specific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex.

Cheriyan J, Kaushik MK, Ferreira AN, Sheets PL.

eNeuro. 2016 Mar 21;3(2). pii: ENEURO.0002-16.2016. doi: 10.1523/ENEURO.0002-16.2016. eCollection 2016 Mar-Apr.

11.

Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity.

Richner TJ, Thongpang S, Brodnick SK, Schendel AA, Falk RW, Krugner-Higby LA, Pashaie R, Williams JC.

J Neural Eng. 2014 Feb;11(1):016010. doi: 10.1088/1741-2560/11/1/016010. Epub 2014 Jan 20.

12.

Flexible fiber-based optoelectronics for neural interfaces.

Park S, Loke G, Fink Y, Anikeeva P.

Chem Soc Rev. 2019 Mar 18;48(6):1826-1852. doi: 10.1039/c8cs00710a. Review.

PMID:
30815657
13.

Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics.

Kwon KY, Sirowatka B, Weber A, Li W.

IEEE Trans Biomed Circuits Syst. 2013 Oct;7(5):593-600. doi: 10.1109/TBCAS.2013.2282318. Epub 2013 Oct 17.

PMID:
24144668
14.

Multimodal optogenetic neural interfacing device fabricated by scalable optical fiber drawing technique.

Davey CJ, Argyros A, Fleming SC, Solomon SG.

Appl Opt. 2015 Dec 1;54(34):10068-72. doi: 10.1364/AO.54.010068.

PMID:
26836662
15.

Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging.

Tsuda S, Kee MZ, Cunha C, Kim J, Yan P, Loew LM, Augustine GJ.

Neurosci Res. 2013 Jan;75(1):76-81. doi: 10.1016/j.neures.2012.11.006. Epub 2012 Dec 17.

16.

Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics.

Fenno LE, Gunaydin LA, Deisseroth K.

Cold Spring Harb Protoc. 2015 Jun 1;2015(6):537-48. doi: 10.1101/pdb.prot075598.

PMID:
26034299
17.

Optogenetic Tools for Confined Stimulation in Deep Brain Structures.

Castonguay A, Thomas S, Lesage F, Casanova C.

Methods Mol Biol. 2016;1408:267-79. doi: 10.1007/978-1-4939-3512-3_18.

PMID:
26965129
18.

Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies.

Ayub S, Gentet LJ, Fiáth R, Schwaerzle M, Borel M, David F, Barthó P, Ulbert I, Paul O, Ruther P.

Biomed Microdevices. 2017 Sep;19(3):49. doi: 10.1007/s10544-017-0190-3.

PMID:
28560702
19.

Prefrontal Cortical Kappa Opioid Receptors Attenuate Responses to Amygdala Inputs.

Tejeda HA, Hanks AN, Scott L, Mejias-Aponte C, Hughes ZA, O'Donnell P.

Neuropsychopharmacology. 2015 Dec;40(13):2856-64. doi: 10.1038/npp.2015.138. Epub 2015 May 14.

20.

Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo.

Packer AM, Russell LE, Dalgleish HW, Häusser M.

Nat Methods. 2015 Feb;12(2):140-6. doi: 10.1038/nmeth.3217. Epub 2014 Dec 22. Erratum in: Nat Methods. 2015 Jul;12(7):692.

Supplemental Content

Support Center