Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Quantification of Bacterial Histidine Kinase Autophosphorylation Using a Nitrocellulose Binding Assay.

Fischer J, Johnson RA, Boon E.

J Vis Exp. 2017 Jan 11;(119). doi: 10.3791/55129.

2.

Optimized assay for the quantification of histidine kinase autophosphorylation.

Ueno TB, Johnson RA, Boon EM.

Biochem Biophys Res Commun. 2015 Sep 25;465(3):331-7. doi: 10.1016/j.bbrc.2015.07.121. Epub 2015 Aug 7.

PMID:
26255967
3.

Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans.

Ashenberg O, Keating AE, Laub MT.

J Mol Biol. 2013 Apr 12;425(7):1198-209. doi: 10.1016/j.jmb.2013.01.011. Epub 2013 Jan 16.

4.

Split histidine kinases enable ultrasensitivity and bistability in two-component signaling networks.

Amin M, Porter SL, Soyer OS.

PLoS Comput Biol. 2013;9(3):e1002949. doi: 10.1371/journal.pcbi.1002949. Epub 2013 Mar 7.

5.

Structural insights into the signalling mechanisms of two-component systems.

Jacob-Dubuisson F, Mechaly A, Betton JM, Antoine R.

Nat Rev Microbiol. 2018 Oct;16(10):585-593. doi: 10.1038/s41579-018-0055-7. Review.

PMID:
30008469
6.

Activation of Bacterial Histidine Kinases: Insights into the Kinetics of the cis Autophosphorylation Mechanism.

Sankhe GD, Dixit NM, Saini DK.

mSphere. 2018 May 16;3(3). pii: e00111-18. doi: 10.1128/mSphere.00111-18. eCollection 2018 May-Jun.

7.

Structural Coupling between Autokinase and Phosphotransferase Reactions in a Bacterial Histidine Kinase.

Mechaly AE, Soto Diaz S, Sassoon N, Buschiazzo A, Betton JM, Alzari PM.

Structure. 2017 Jun 6;25(6):939-944.e3. doi: 10.1016/j.str.2017.04.011. Epub 2017 May 25.

8.

Temporal and evolutionary dynamics of two-component signaling pathways.

Salazar ME, Laub MT.

Curr Opin Microbiol. 2015 Apr;24:7-14. doi: 10.1016/j.mib.2014.12.003. Epub 2015 Jan 10. Review.

9.

Atypical modes of bacterial histidine kinase signaling.

Willett JW, Crosson S.

Mol Microbiol. 2017 Jan;103(2):197-202. doi: 10.1111/mmi.13525. Epub 2016 Sep 30. Review.

10.

The Histidine Residue of QseC Is Required for Canonical Signaling between QseB and PmrB in Uropathogenic Escherichia coli.

Breland EJ, Zhang EW, Bermudez T, Martinez CR 3rd, Hadjifrangiskou M.

J Bacteriol. 2017 Aug 22;199(18). pii: e00060-17. doi: 10.1128/JB.00060-17. Print 2017 Sep 15.

11.

Nitric oxide regulated two-component signaling in Pseudoalteromonas atlantica.

Arora DP, Boon EM.

Biochem Biophys Res Commun. 2012 May 11;421(3):521-6. doi: 10.1016/j.bbrc.2012.04.037. Epub 2012 Apr 10.

PMID:
22521885
12.
13.

Functional Characterization of the Receiver Domain for Phosphorelay Control in Hybrid Sensor Kinases.

Kinoshita-Kikuta E, Kinoshita E, Eguchi Y, Yanagihara S, Edahiro K, Inoue Y, Taniguchi M, Yoshida M, Yamamoto K, Takahashi H, Sawasaki T, Utsumi R, Koike T.

PLoS One. 2015 Jul 7;10(7):e0132598. doi: 10.1371/journal.pone.0132598. eCollection 2015. Erratum in: PLoS One. 2015;10(8):e0136022.

14.

Structural characterization of the heme-based oxygen sensor, AfGcHK, its interactions with the cognate response regulator, and their combined mechanism of action in a bacterial two-component signaling system.

Stranava M, Martínek V, Man P, Fojtikova V, Kavan D, Vaněk O, Shimizu T, Martinkova M.

Proteins. 2016 Oct;84(10):1375-89. doi: 10.1002/prot.25083. Epub 2016 Jun 23.

PMID:
27273553
15.
16.

Kinetic and mechanistic analyses of new classes of inhibitors of two-component signal transduction systems using a coupled assay containing HpkA-DrrA from Thermotoga maritima.

Foster JE, Sheng Q, McClain JR, Bures M, Nicas TI, Henry K, Winkler ME, Gilmour R.

Microbiology. 2004 Apr;150(Pt 4):885-96.

PMID:
15073298
17.

A novel "four-component" two-component signal transduction mechanism regulates developmental progression in Myxococcus xanthus.

Jagadeesan S, Mann P, Schink CW, Higgs PI.

J Biol Chem. 2009 Aug 7;284(32):21435-45. doi: 10.1074/jbc.M109.033415. Epub 2009 Jun 17.

18.

The histidine kinase inhibitor Sda binds near the site of autophosphorylation and may sterically hinder autophosphorylation and phosphotransfer to Spo0F.

Cunningham KA, Burkholder WF.

Mol Microbiol. 2009 Feb;71(3):659-77. doi: 10.1111/j.1365-2958.2008.06554.x. Epub 2008 Nov 24.

19.

Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction.

Stranava M, Man P, Skálová T, Kolenko P, Blaha J, Fojtikova V, Martínek V, Dohnálek J, Lengalova A, Rosůlek M, Shimizu T, Martínková M.

J Biol Chem. 2017 Dec 22;292(51):20921-20935. doi: 10.1074/jbc.M117.817023. Epub 2017 Nov 1.

20.

Conformational dynamics of the essential sensor histidine kinase WalK.

Cai Y, Su M, Ahmad A, Hu X, Sang J, Kong L, Chen X, Wang C, Shuai J, Han A.

Acta Crystallogr D Struct Biol. 2017 Oct 1;73(Pt 10):793-803. doi: 10.1107/S2059798317013043. Epub 2017 Sep 27.

Supplemental Content

Support Center