Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Tissue loading created during spinal manipulation in comparison to loading created by passive spinal movements.

Funabashi M, Kawchuk GN, Vette AH, Goldsmith P, Prasad N.

Sci Rep. 2016 Dec 1;6:38107. doi: 10.1038/srep38107.

2.

Does the application site of spinal manipulative therapy alter spinal tissues loading?

Funabashi M, Nougarou F, Descarreaux M, Prasad N, Kawchuk GN.

Spine J. 2018 Jun;18(6):1041-1052. doi: 10.1016/j.spinee.2018.01.008. Epub 2018 Jan 31.

PMID:
29355792
3.

Spinal Tissue Loading Created by Different Methods of Spinal Manipulative Therapy Application.

Funabashi M, Nougarou F, Descarreaux M, Prasad N, Kawchuk GN.

Spine (Phila Pa 1976). 2017 May 1;42(9):635-643. doi: 10.1097/BRS.0000000000002096.

4.

Influence of Spinal Manipulative Therapy Force Magnitude and Application Site on Spinal Tissue Loading: A Biomechanical Robotic Serial Dissection Study in Porcine Motion Segments.

Funabashi M, Nougarou F, Descarreaux M, Prasad N, Kawchuk G.

J Manipulative Physiol Ther. 2017 Jul - Aug;40(6):387-396. doi: 10.1016/j.jmpt.2017.05.003.

PMID:
28822473
5.

Patient-Induced Reaction Forces and Moments Are Influenced by Variations in Spinal Manipulative Technique.

D'Angelo K, Triano JJ, Kawchuk GN, Howarth SJ.

Spine (Phila Pa 1976). 2017 Jan 15;42(2):E71-E77. doi: 10.1097/BRS.0000000000001725.

PMID:
27270638
6.

Identification of spinal tissues loaded by manual therapy: a robot-based serial dissection technique applied in porcine motion segments.

Kawchuk GN, Carrasco A, Beecher G, Goertzen D, Prasad N.

Spine (Phila Pa 1976). 2010 Oct 15;35(22):1983-90. doi: 10.1097/BRS.0b013e3181ddd0a3.

7.

The relation between the application angle of spinal manipulative therapy (SMT) and resultant vertebral accelerations in an in situ porcine model.

Kawchuk GN, Perle SM.

Man Ther. 2009 Oct;14(5):480-3. doi: 10.1016/j.math.2008.11.001. Epub 2009 Jan 13.

PMID:
19144558
8.

Kinematic evaluation of one- and two-level Maverick lumbar total disc replacement caudal to a long thoracolumbar spinal fusion.

Zhu Q, Itshayek E, Jones CF, Schwab T, Larson CR, Lenke LG, Cripton PA.

Eur Spine J. 2012 Jun;21 Suppl 5:S599-611. doi: 10.1007/s00586-012-2301-4. Epub 2012 Apr 25.

9.

Acceleration of clinician hand movements during spinal manipulative therapy.

Gelley GM, Passmore SR, MacNeil BJ.

Man Ther. 2015 Apr;20(2):342-8. doi: 10.1016/j.math.2014.10.010. Epub 2014 Oct 31.

PMID:
25458144
10.

Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.

Popovich JM Jr, Welcher JB, Hedman TP, Tawackoli W, Anand N, Chen TC, Kulig K.

Spine J. 2013 Nov;13(11):1581-9. doi: 10.1016/j.spinee.2013.04.011. Epub 2013 May 21.

PMID:
23706384
11.

Physiological responses to spinal manipulation therapy: investigation of the relationship between electromyographic responses and peak force.

Nougarou F, Dugas C, Deslauriers C, Pagé I, Descarreaux M.

J Manipulative Physiol Ther. 2013 Nov-Dec;36(9):557-63. doi: 10.1016/j.jmpt.2013.08.006. Epub 2013 Oct 22.

PMID:
24161387
12.

A Feasibility Study to Assess Vibration and Sound From Zygapophyseal Joints During Motion Before and After Spinal Manipulation.

Cramer GD, Budavich M, Bora P, Ross K.

J Manipulative Physiol Ther. 2017 Mar - Apr;40(3):187-200. doi: 10.1016/j.jmpt.2017.01.003. Epub 2017 Mar 6.

13.

Magnetic resonance imaging zygapophyseal joint space changes (gapping) in low back pain patients following spinal manipulation and side-posture positioning: a randomized controlled mechanisms trial with blinding.

Cramer GD, Cambron J, Cantu JA, Dexheimer JM, Pocius JD, Gregerson D, Fergus M, McKinnis R, Grieve TJ.

J Manipulative Physiol Ther. 2013 May;36(4):203-17. doi: 10.1016/j.jmpt.2013.04.003. Epub 2013 May 3.

14.

Neuromechanical characterization of in vivo lumbar spinal manipulation. Part I. Vertebral motion.

Keller TS, Colloca CJ, Gunzburg R.

J Manipulative Physiol Ther. 2003 Nov-Dec;26(9):567-78.

PMID:
14673406
15.

Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments.

Bennett CR, Kelly BP.

J Biomech. 2013 Aug 9;46(12):2087-92. doi: 10.1016/j.jbiomech.2013.05.031. Epub 2013 Jun 27.

PMID:
23809771
16.

Optimizing treatment protocols for spinal manipulative therapy: study protocol for a randomized trial.

Fritz JM, Sharpe JA, Lane E, Santillo D, Greene T, Kawchuk G.

Trials. 2018 Jun 4;19(1):306. doi: 10.1186/s13063-018-2692-6.

17.

Quantification of cavitation and gapping of lumbar zygapophyseal joints during spinal manipulative therapy.

Cramer GD, Ross K, Raju PK, Cambron J, Cantu JA, Bora P, Dexheimer JM, McKinnis R, Habeck AR, Selby S, Pocius JD, Gregerson D.

J Manipulative Physiol Ther. 2012 Oct;35(8):614-21. doi: 10.1016/j.jmpt.2012.06.007. Epub 2012 Aug 14.

18.

The effect of duration and amplitude of spinal manipulative therapy (SMT) on spinal stiffness.

Vaillant M, Edgecombe T, Long CR, Pickar JG, Kawchuk GN.

Man Ther. 2012 Dec;17(6):577-83. doi: 10.1016/j.math.2012.06.006. Epub 2012 Jul 17.

19.

The effect of application site of spinal manipulative therapy (SMT) on spinal stiffness.

Edgecombe TL, Kawchuk GN, Long CR, Pickar JG.

Spine J. 2015 Jun 1;15(6):1332-8. doi: 10.1016/j.spinee.2013.07.480. Epub 2013 Oct 17.

20.

Capturing three-dimensional in vivo lumbar intervertebral joint kinematics using dynamic stereo-X-ray imaging.

Aiyangar AK, Zheng L, Tashman S, Anderst WJ, Zhang X.

J Biomech Eng. 2014 Jan;136(1):011004.

PMID:
24149991

Supplemental Content

Support Center