Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 123

1.

Evaluation of dipeptide nitriles as inhibitors of rhodesain, a major cysteine protease of Trypanosoma brucei.

Schirmeister T, Schmitz J, Jung S, Schmenger T, Krauth-Siegel RL, Gütschow M.

Bioorg Med Chem Lett. 2017 Jan 1;27(1):45-50. doi: 10.1016/j.bmcl.2016.11.036. Epub 2016 Nov 15.

PMID:
27890381
2.

Optimization of triazine nitriles as rhodesain inhibitors: structure-activity relationships, bioisosteric imidazopyridine nitriles, and X-ray crystal structure analysis with human cathepsin L.

Ehmke V, Winkler E, Banner DW, Haap W, Schweizer WB, Rottmann M, Kaiser M, Freymond C, Schirmeister T, Diederich F.

ChemMedChem. 2013 Jun;8(6):967-75. doi: 10.1002/cmdc.201300112. Epub 2013 May 9.

PMID:
23658062
3.

Design, synthesis and biological evaluation of potent azadipeptide nitrile inhibitors and activity-based probes as promising anti-Trypanosoma brucei agents.

Yang PY, Wang M, Li L, Wu H, He CY, Yao SQ.

Chemistry. 2012 May 21;18(21):6528-41. doi: 10.1002/chem.201103322. Epub 2012 Apr 4.

PMID:
22488888
4.

Identification of non-peptidic cysteine reactive fragments as inhibitors of cysteine protease rhodesain.

McShan D, Kathman S, Lowe B, Xu Z, Zhan J, Statsyuk A, Ogungbe IV.

Bioorg Med Chem Lett. 2015 Oct 15;25(20):4509-12. doi: 10.1016/j.bmcl.2015.08.074. Epub 2015 Sep 2.

5.

Tuning and predicting biological affinity: aryl nitriles as cysteine protease inhibitors.

Ehmke V, Quinsaat JE, Rivera-Fuentes P, Heindl C, Freymond C, Rottmann M, Brun R, Schirmeister T, Diederich F.

Org Biomol Chem. 2012 Aug 14;10(30):5764-8. doi: 10.1039/c2ob00034b. Epub 2012 Feb 16.

PMID:
22336919
6.

Development of Novel Peptide-Based Michael Acceptors Targeting Rhodesain and Falcipain-2 for the Treatment of Neglected Tropical Diseases (NTDs).

Previti S, Ettari R, Cosconati S, Amendola G, Chouchene K, Wagner A, Hellmich UA, Ulrich K, Krauth-Siegel RL, Wich PR, Schmid I, Schirmeister T, Gut J, Rosenthal PJ, Grasso S, Zappalà M.

J Med Chem. 2017 Aug 24;60(16):6911-6923. doi: 10.1021/acs.jmedchem.7b00405. Epub 2017 Aug 11.

PMID:
28763614
7.

Development of novel dipeptide-like rhodesain inhibitors containing the 3-bromoisoxazoline warhead in a constrained conformation.

Ettari R, Pinto A, Previti S, Tamborini L, Angelo IC, La Pietra V, Marinelli L, Novellino E, Schirmeister T, Zappalà M, Grasso S, De Micheli C, Conti P.

Bioorg Med Chem. 2015 Nov 1;23(21):7053-60. doi: 10.1016/j.bmc.2015.09.029. Epub 2015 Sep 21.

PMID:
26432608
8.

Antiprotozoal and cysteine proteases inhibitory activity of dipeptidyl enoates.

Royo S, Schirmeister T, Kaiser M, Jung S, Rodríguez S, Bautista JM, González FV.

Bioorg Med Chem. 2018 Sep 1;26(16):4624-4634. doi: 10.1016/j.bmc.2018.07.015. Epub 2018 Jul 10.

PMID:
30037754
9.

Dipeptidyl-alpha,beta-epoxyesters as potent irreversible inhibitors of the cysteine proteases cruzain and rhodesain.

González FV, Izquierdo J, Rodríguez S, McKerrow JH, Hansell E.

Bioorg Med Chem Lett. 2007 Dec 15;17(24):6697-700. Epub 2007 Oct 22.

PMID:
17977725
10.

Discovery of trypanocidal thiosemicarbazone inhibitors of rhodesain and TbcatB.

Mallari JP, Shelat A, Kosinski A, Caffrey CR, Connelly M, Zhu F, McKerrow JH, Guy RK.

Bioorg Med Chem Lett. 2008 May 1;18(9):2883-5. doi: 10.1016/j.bmcl.2008.03.083. Epub 2008 Apr 8.

11.

Identification and optimization of inhibitors of Trypanosomal cysteine proteases: cruzain, rhodesain, and TbCatB.

Mott BT, Ferreira RS, Simeonov A, Jadhav A, Ang KK, Leister W, Shen M, Silveira JT, Doyle PS, Arkin MR, McKerrow JH, Inglese J, Austin CP, Thomas CJ, Shoichet BK, Maloney DJ.

J Med Chem. 2010 Jan 14;53(1):52-60. doi: 10.1021/jm901069a.

12.

2 H-1,2,3-Triazole-Based Dipeptidyl Nitriles: Potent, Selective, and Trypanocidal Rhodesain Inhibitors by Structure-Based Design.

Giroud M, Kuhn B, Saint-Auret S, Kuratli C, Martin RE, Schuler F, Diederich F, Kaiser M, Brun R, Schirmeister T, Haap W.

J Med Chem. 2018 Apr 26;61(8):3370-3388. doi: 10.1021/acs.jmedchem.7b01870. Epub 2018 Apr 6.

PMID:
29590751
13.

Dipeptide-derived nitriles containing additional electrophilic sites: potentially irreversible inhibitors of cysteine proteases.

Löser R, Gütschow M.

J Enzyme Inhib Med Chem. 2009 Dec;24(6):1245-52. doi: 10.3109/14756360902797328.

PMID:
19912058
14.

Highly selective azadipeptide nitrile inhibitors for cathepsin K: design, synthesis and activity assays.

Ren XF, Li HW, Fang X, Wu Y, Wang L, Zou S.

Org Biomol Chem. 2013 Feb 21;11(7):1143-8. doi: 10.1039/c2ob26624e.

PMID:
23299878
15.

Fluorescent nitrile-based inhibitors of cysteine cathepsins.

Frizler M, Mertens MD, Gütschow M.

Bioorg Med Chem Lett. 2012 Dec 15;22(24):7715-8. doi: 10.1016/j.bmcl.2012.09.086. Epub 2012 Oct 3.

PMID:
23122525
16.

Michael acceptor based antiplasmodial and antitrypanosomal cysteine protease inhibitors with unusual amino acids.

Breuning A, Degel B, Schulz F, Büchold C, Stempka M, Machon U, Heppner S, Gelhaus C, Leippe M, Leyh M, Kisker C, Rath J, Stich A, Gut J, Rosenthal PJ, Schmuck C, Schirmeister T.

J Med Chem. 2010 Mar 11;53(5):1951-63. doi: 10.1021/jm900946n.

PMID:
20131843
17.

Improved trypanocidal activities of cathepsin L inhibitors.

Nkemgu NJ, Grande R, Hansell E, McKerrow JH, Caffrey CR, Steverding D.

Int J Antimicrob Agents. 2003 Aug;22(2):155-9.

PMID:
12927956
18.

Allicin and derivates are cysteine protease inhibitors with antiparasitic activity.

Waag T, Gelhaus C, Rath J, Stich A, Leippe M, Schirmeister T.

Bioorg Med Chem Lett. 2010 Sep 15;20(18):5541-3. doi: 10.1016/j.bmcl.2010.07.062. Epub 2010 Aug 6.

PMID:
20692829
19.

Antimalarial activity of azadipeptide nitriles.

Löser R, Gut J, Rosenthal PJ, Frizler M, Gütschow M, Andrews KT.

Bioorg Med Chem Lett. 2010 Jan 1;20(1):252-5. doi: 10.1016/j.bmcl.2009.10.122. Epub 2009 Oct 30.

20.

Interaction of papain-like cysteine proteases with dipeptide-derived nitriles.

Löser R, Schilling K, Dimmig E, Gütschow M.

J Med Chem. 2005 Dec 1;48(24):7688-707.

PMID:
16302809

Supplemental Content

Support Center