Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 147

1.

β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity.

Hasim S, Allison DP, Retterer ST, Hopke A, Wheeler RT, Doktycz MJ, Reynolds TB.

Infect Immun. 2016 Dec 29;85(1). pii: e00601-16. doi: 10.1128/IAI.00601-16. Print 2017 Jan.

2.

Masking of β(1-3)-glucan in the cell wall of Candida albicans from detection by innate immune cells depends on phosphatidylserine.

Davis SE, Hopke A, Minkin SC Jr, Montedonico AE, Wheeler RT, Reynolds TB.

Infect Immun. 2014 Oct;82(10):4405-13. doi: 10.1128/IAI.01612-14. Epub 2014 Aug 11.

3.

Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway.

Chen T, Jackson JW, Tams RN, Davis SE, Sparer TE, Reynolds TB.

PLoS Genet. 2019 Jan 31;15(1):e1007892. doi: 10.1371/journal.pgen.1007892. eCollection 2019 Jan.

4.

Candida albicans hypha formation and mannan masking of β-glucan inhibit macrophage phagosome maturation.

Bain JM, Louw J, Lewis LE, Okai B, Walls CA, Ballou ER, Walker LA, Reid D, Munro CA, Brown AJ, Brown GD, Gow NA, Erwig LP.

MBio. 2014 Dec 2;5(6):e01874. doi: 10.1128/mBio.01874-14.

5.

Nanoscopic cell-wall architecture of an immunogenic ligand in Candida albicans during antifungal drug treatment.

Lin J, Wester MJ, Graus MS, Lidke KA, Neumann AK.

Mol Biol Cell. 2016 Mar 15;27(6):1002-14. doi: 10.1091/mbc.E15-06-0355. Epub 2016 Jan 20.

6.

Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment.

Wheeler RT, Kombe D, Agarwala SD, Fink GR.

PLoS Pathog. 2008 Dec;4(12):e1000227. doi: 10.1371/journal.ppat.1000227. Epub 2008 Dec 5.

7.

Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans.

Granger BL.

PLoS One. 2018 Jan 12;13(1):e0191194. doi: 10.1371/journal.pone.0191194. eCollection 2018.

8.

Abolishing Cell Wall Glycosylphosphatidylinositol-Anchored Proteins in Candida albicans Enhances Recognition by Host Dectin-1.

Shen H, Chen SM, Liu W, Zhu F, He LJ, Zhang JD, Zhang SQ, Yan L, Xu Z, Xu GT, An MM, Jiang YY.

Infect Immun. 2015 Jul;83(7):2694-704. doi: 10.1128/IAI.00097-15. Epub 2015 Apr 20.

9.

Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1.

Marakalala MJ, Vautier S, Potrykus J, Walker LA, Shepardson KM, Hopke A, Mora-Montes HM, Kerrigan A, Netea MG, Murray GI, Maccallum DM, Wheeler R, Munro CA, Gow NA, Cramer RA, Brown AJ, Brown GD.

PLoS Pathog. 2013;9(4):e1003315. doi: 10.1371/journal.ppat.1003315. Epub 2013 Apr 18.

10.

Hypoxia Promotes Immune Evasion by Triggering β-Glucan Masking on the Candida albicans Cell Surface via Mitochondrial and cAMP-Protein Kinase A Signaling.

Pradhan A, Avelar GM, Bain JM, Childers DS, Larcombe DE, Netea MG, Shekhova E, Munro CA, Brown GD, Erwig LP, Gow NAR, Brown AJP.

MBio. 2018 Nov 6;9(6). pii: e01318-18. doi: 10.1128/mBio.01318-18.

11.

Candida albicans beta-glucan exposure is controlled by the fungal CEK1-mediated mitogen-activated protein kinase pathway that modulates immune responses triggered through dectin-1.

Galán-Díez M, Arana DM, Serrano-Gómez D, Kremer L, Casasnovas JM, Ortega M, Cuesta-Domínguez A, Corbí AL, Pla J, Fernández-Ruiz E.

Infect Immun. 2010 Apr;78(4):1426-36. doi: 10.1128/IAI.00989-09. Epub 2010 Jan 25.

12.

AFM force spectroscopy reveals how subtle structural differences affect the interaction strength between Candida albicans and DC-SIGN.

te Riet J, Reinieren-Beeren I, Figdor CG, Cambi A.

J Mol Recognit. 2015 Nov;28(11):687-98. doi: 10.1002/jmr.2481. Epub 2015 May 26.

PMID:
26011000
13.

Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity.

Zhang SQ, Zou Z, Shen H, Shen SS, Miao Q, Huang X, Liu W, Li LP, Chen SM, Yan L, Zhang JD, Zhao JJ, Xu GT, An MM, Jiang YY.

PLoS Pathog. 2016 May 4;12(5):e1005617. doi: 10.1371/journal.ppat.1005617. eCollection 2016 May.

14.

An anti-inflammatory property of Candida albicans β-glucan: Induction of high levels of interleukin-1 receptor antagonist via a Dectin-1/CR3 independent mechanism.

Smeekens SP, Gresnigt MS, Becker KL, Cheng SC, Netea SA, Jacobs L, Jansen T, van de Veerdonk FL, Williams DL, Joosten LA, Dinarello CA, Netea MG.

Cytokine. 2015 Feb;71(2):215-22. doi: 10.1016/j.cyto.2014.10.013. Epub 2014 Nov 20.

15.

β-glucan Exposure on the Fungal Cell Wall Tightly Correlates with Competitive Fitness of Candida Species in the Mouse Gastrointestinal Tract.

Sem X, Le GT, Tan AS, Tso G, Yurieva M, Liao WW, Lum J, Srinivasan KG, Poidinger M, Zolezzi F, Pavelka N.

Front Cell Infect Microbiol. 2016 Dec 22;6:186. doi: 10.3389/fcimb.2016.00186. eCollection 2016.

16.

A computational model for regulation of nanoscale glucan exposure in Candida albicans.

Wester MJ, Lin J, Neumann AK.

PLoS One. 2017 Dec 12;12(12):e0188599. doi: 10.1371/journal.pone.0188599. eCollection 2017.

17.

Deletion of the Candida albicans histidine kinase gene CHK1 improves recognition by phagocytes through an increased exposure of cell wall beta-1,3-glucans.

Klippel N, Cui S, Groebe L, Bilitewski U.

Microbiology. 2010 Nov;156(Pt 11):3432-44. doi: 10.1099/mic.0.040006-0. Epub 2010 Aug 5.

PMID:
20688824
18.

MBL-mediated opsonophagocytosis of Candida albicans by human neutrophils is coupled with intracellular Dectin-1-triggered ROS production.

Li D, Dong B, Tong Z, Wang Q, Liu W, Wang Y, Liu W, Chen J, Xu L, Chen L, Duan Y.

PLoS One. 2012;7(12):e50589. doi: 10.1371/journal.pone.0050589. Epub 2012 Dec 11.

19.

Immune recognition of Candida albicans beta-glucan by dectin-1.

Gow NA, Netea MG, Munro CA, Ferwerda G, Bates S, Mora-Montes HM, Walker L, Jansen T, Jacobs L, Tsoni V, Brown GD, Odds FC, Van der Meer JW, Brown AJ, Kullberg BJ.

J Infect Dis. 2007 Nov 15;196(10):1565-71. Epub 2007 Oct 31.

20.

Nanoscale effects of caspofungin against two yeast species, Saccharomyces cerevisiae and Candida albicans.

Formosa C, Schiavone M, Martin-Yken H, François JM, Duval RE, Dague E.

Antimicrob Agents Chemother. 2013 Aug;57(8):3498-506. doi: 10.1128/AAC.00105-13. Epub 2013 May 13.

Supplemental Content

Support Center