Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer.

Ko YH, Domingo-Vidal M, Roche M, Lin Z, Whitaker-Menezes D, Seifert E, Capparelli C, Tuluc M, Birbe RC, Tassone P, Curry JM, Navarro-Sabaté À, Manzano A, Bartrons R, Caro J, Martinez-Outschoorn U.

J Biol Chem. 2016 Dec 16;291(51):26291-26303. Epub 2016 Nov 1.

2.

Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells.

Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko YH, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP.

Cancer Biol Ther. 2011 Nov 15;12(10):924-38. doi: 10.4161/cbt.12.10.17780. Epub 2011 Nov 15.

3.

Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death.

Cheung EC, Ludwig RL, Vousden KH.

Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20491-6. doi: 10.1073/pnas.1206530109. Epub 2012 Nov 26.

4.

TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radiosensitization of glioma cells.

Peña-Rico MA, Calvo-Vidal MN, Villalonga-Planells R, Martínez-Soler F, Giménez-Bonafé P, Navarro-Sabaté À, Tortosa A, Bartrons R, Manzano A.

Radiother Oncol. 2011 Oct;101(1):132-9. doi: 10.1016/j.radonc.2011.07.002. Epub 2011 Aug 22.

PMID:
21864926
5.

Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.

Martinez-Outschoorn U, Sotgia F, Lisanti MP.

Semin Oncol. 2014 Apr;41(2):195-216. doi: 10.1053/j.seminoncol.2014.03.002. Epub 2014 Mar 5. Review.

PMID:
24787293
6.

Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator).

Li H, Jogl G.

J Biol Chem. 2009 Jan 16;284(3):1748-54. doi: 10.1074/jbc.M807821200. Epub 2008 Nov 17.

7.

Acetylation mediated by the p300/CBP-associated factor determines cellular energy metabolic pathways in cancer.

Rajendran R, Garva R, Ashour H, Leung T, Stratford I, Krstic-Demonacos M, Demonacos C.

Int J Oncol. 2013 Jun;42(6):1961-72. doi: 10.3892/ijo.2013.1907. Epub 2013 Apr 17.

PMID:
23591450
8.

ATM-NFκB axis-driven TIGAR regulates sensitivity of glioma cells to radiomimetics in the presence of TNFα.

Sinha S, Ghildiyal R, Mehta VS, Sen E.

Cell Death Dis. 2013 May 2;4:e615. doi: 10.1038/cddis.2013.128.

10.

TIGAR, a p53-inducible regulator of glycolysis and apoptosis.

Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH.

Cell. 2006 Jul 14;126(1):107-20.

11.

Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development.

Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, Martinez-Outschoorn U.

Semin Oncol. 2017 Jun;44(3):198-203. doi: 10.1053/j.seminoncol.2017.10.004. Epub 2017 Oct 10. Review.

12.

Therapeutic Targeting of the Warburg Effect in Pancreatic Cancer Relies on an Absence of p53 Function.

Rajeshkumar NV, Dutta P, Yabuuchi S, de Wilde RF, Martinez GV, Le A, Kamphorst JJ, Rabinowitz JD, Jain SK, Hidalgo M, Dang CV, Gillies RJ, Maitra A.

Cancer Res. 2015 Aug 15;75(16):3355-64. doi: 10.1158/0008-5472.CAN-15-0108. Epub 2015 Jun 25.

13.

Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production.

Guido C, Whitaker-Menezes D, Capparelli C, Balliet R, Lin Z, Pestell RG, Howell A, Aquila S, Andò S, Martinez-Outschoorn U, Sotgia F, Lisanti MP.

Cell Cycle. 2012 Aug 15;11(16):3019-35. doi: 10.4161/cc.21384. Epub 2012 Aug 9.

14.

Akt mediates TIGAR induction in HeLa cells following PFKFB3 inhibition.

Simon-Molas H, Calvo-Vidal MN, Castaño E, Rodríguez-García A, Navarro-Sabaté À, Bartrons R, Manzano A.

FEBS Lett. 2016 Sep;590(17):2915-26. doi: 10.1002/1873-3468.12338. Epub 2016 Aug 24.

15.

Two p53-related metabolic regulators, TIGAR and SCO2, contribute to oroxylin A-mediated glucose metabolism in human hepatoma HepG2 cells.

Dai Q, Yin Y, Liu W, Wei L, Zhou Y, Li Z, You Q, Lu N, Guo Q.

Int J Biochem Cell Biol. 2013 Jul;45(7):1468-78. doi: 10.1016/j.biocel.2013.04.015. Epub 2013 Apr 21.

PMID:
23612020
16.

p53 and TIGAR regulate cardiac myocyte energy homeostasis under hypoxic stress.

Kimata M, Matoba S, Iwai-Kanai E, Nakamura H, Hoshino A, Nakaoka M, Katamura M, Okawa Y, Mita Y, Okigaki M, Ikeda K, Tatsumi T, Matsubara H.

Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1908-16. doi: 10.1152/ajpheart.00250.2010. Epub 2010 Oct 8.

17.

Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation.

Ge X, Lyu P, Gu Y, Li L, Li J, Wang Y, Zhang L, Fu C, Cao Z.

Biochem Biophys Res Commun. 2015 Aug 28;464(3):862-8. doi: 10.1016/j.bbrc.2015.07.052. Epub 2015 Jul 11.

PMID:
26171876
18.

TIGAR cooperated with glycolysis to inhibit the apoptosis of leukemia cells and associated with poor prognosis in patients with cytogenetically normal acute myeloid leukemia.

Qian S, Li J, Hong M, Zhu Y, Zhao H, Xie Y, Huang J, Lian Y, Li Y, Wang S, Mao J, Chen Y.

J Hematol Oncol. 2016 Nov 25;9(1):128.

19.

Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis.

Avena P, Anselmo W, Whitaker-Menezes D, Wang C, Pestell RG, Lamb RS, Hulit J, Casaburi I, Andò S, Martinez-Outschoorn UE, Lisanti MP, Sotgia F.

Cell Cycle. 2013 May 1;12(9):1360-70. doi: 10.4161/cc.24289. Epub 2013 Apr 10.

20.

Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth.

Chiavarina B, Whitaker-Menezes D, Martinez-Outschoorn UE, Witkiewicz AK, Birbe R, Howell A, Pestell RG, Smith J, Daniel R, Sotgia F, Lisanti MP.

Cancer Biol Ther. 2011 Dec 15;12(12):1101-13. doi: 10.4161/cbt.12.12.18703. Epub 2011 Dec 15.

Supplemental Content

Support Center