Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

Rapid Radiations and the Race to Redundancy: An Investigation of the Evolution of Australian Elapid Snake Venoms.

Jackson TN, Koludarov I, Ali SA, Dobson J, Zdenek CN, Dashevsky D, Op den Brouw B, Masci PP, Nouwens A, Josh P, Goldenberg J, Cipriani V, Hay C, Hendrikx I, Dunstan N, Allen L, Fry BG.

Toxins (Basel). 2016 Oct 26;8(11). pii: E309.

2.

Venom down under: dynamic evolution of Australian elapid snake toxins.

Jackson TN, Sunagar K, Undheim EA, Koludarov I, Chan AH, Sanders K, Ali SA, Hendrikx I, Dunstan N, Fry BG.

Toxins (Basel). 2013 Dec 18;5(12):2621-55. doi: 10.3390/toxins5122621.

3.

Correlation between ontogenetic dietary shifts and venom variation in Australian brown snakes (Pseudonaja).

Cipriani V, Debono J, Goldenberg J, Jackson TNW, Arbuckle K, Dobson J, Koludarov I, Li B, Hay C, Dunstan N, Allen L, Hendrikx I, Kwok HF, Fry BG.

Comp Biochem Physiol C Toxicol Pharmacol. 2017 Jul;197:53-60. doi: 10.1016/j.cbpc.2017.04.007. Epub 2017 Apr 27.

PMID:
28457945
4.

Label-Free (XIC) Quantification of Venom Procoagulant and Neurotoxin Expression in Related Australian Elapid Snakes Gives Insight into Venom Toxicity Evolution.

Skejic J, Steer DL, Dunstan N, Hodgson WC.

J Proteome Res. 2015 Nov 6;14(11):4896-906. doi: 10.1021/acs.jproteome.5b00764. Epub 2015 Oct 21.

PMID:
26486890
6.

Catch a tiger snake by its tail: Differential toxicity, co-factor dependence and antivenom efficacy in a procoagulant clade of Australian venomous snakes.

Lister C, Arbuckle K, Jackson TNW, Debono J, Zdenek CN, Dashevsky D, Dunstan N, Allen L, Hay C, Bush B, Gillett A, Fry BG.

Comp Biochem Physiol C Toxicol Pharmacol. 2017 Nov;202:39-54. doi: 10.1016/j.cbpc.2017.07.005. Epub 2017 Jul 27.

PMID:
28757215
7.

Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics.

Lomonte B, Fernández J, Sanz L, Angulo Y, Sasa M, Gutiérrez JM, Calvete JJ.

J Proteomics. 2014 Jun 13;105:323-39. doi: 10.1016/j.jprot.2014.02.020. Epub 2014 Feb 24. Review.

PMID:
24576642
8.
9.

Australian elapid snake envenomation in cats: Clinical priorities and approach.

Mcalees TJ, Abraham LA.

J Feline Med Surg. 2017 Nov;19(11):1131-1147. doi: 10.1177/1098612X17735761. Review.

PMID:
29068247
10.

Two color morphs of the pelagic yellow-bellied sea snake, Pelamis platura, from different locations of Costa Rica: snake venomics, toxicity, and neutralization by antivenom.

Lomonte B, Pla D, Sasa M, Tsai WC, Solórzano A, Ureña-Díaz JM, Fernández-Montes ML, Mora-Obando D, Sanz L, Gutiérrez JM, Calvete JJ.

J Proteomics. 2014 May 30;103:137-52. doi: 10.1016/j.jprot.2014.03.034. Epub 2014 Apr 3.

PMID:
24704853
11.
12.

Efficacy of antivenom against the procoagulant effect of Australian brown snake (Pseudonaja sp.) venom: in vivo and in vitro studies.

Isbister GK, O'Leary MA, Schneider JJ, Brown SG, Currie BJ; ASP Investigators.

Toxicon. 2007 Jan;49(1):57-67. Epub 2006 Sep 17.

PMID:
17055016
13.

Mud in the blood: Novel potent anticoagulant coagulotoxicity in the venoms of the Australian elapid snake genus Denisonia (mud adders) and relative antivenom efficacy.

Youngman NJ, Zdenek CN, Dobson JS, Bittenbinder MA, Gillett A, Hamilton B, Dunstan N, Allen L, Veary A, Veary E, Fry BG.

Toxicol Lett. 2019 Mar 1;302:1-6. doi: 10.1016/j.toxlet.2018.11.015. Epub 2018 Nov 28.

PMID:
30502385
14.

Proteomic comparisons of venoms of long-term captive and recently wild-caught Eastern brown snakes (Pseudonaja textilis) indicate venom does not change due to captivity.

McCleary RJ, Sridharan S, Dunstan NL, Mirtschin PJ, Kini RM.

J Proteomics. 2016 Jul 20;144:51-62. doi: 10.1016/j.jprot.2016.05.027. Epub 2016 May 27.

PMID:
27240975
15.

Feeding behavior and venom toxicity of coral snake Micrurus nigrocinctus (Serpentes: Elapidae) on its natural prey in captivity.

Urdaneta AH, Bolaños F, Gutiérrez JM.

Comp Biochem Physiol C Toxicol Pharmacol. 2004 Aug;138(4):485-92.

PMID:
15536056
16.

The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms.

Margres MJ, Aronow K, Loyacano J, Rokyta DR.

BMC Genomics. 2013 Aug 2;14:531. doi: 10.1186/1471-2164-14-531.

17.

Deep venomics of the Pseudonaja genus reveals inter- and intra-specific variation.

Reeks T, Lavergne V, Sunagar K, Jones A, Undheim E, Dunstan N, Fry B, Alewood PF.

J Proteomics. 2016 Feb 5;133:20-32. doi: 10.1016/j.jprot.2015.11.019. Epub 2015 Nov 26.

PMID:
26632978
18.
19.

Post-translational modification accounts for the presence of varied forms of nerve growth factor in Australian elapid snake venoms.

Earl ST, Birrell GW, Wallis TP, St Pierre LD, Masci PP, de Jersey J, Gorman JJ, Lavin MF.

Proteomics. 2006 Dec;6(24):6554-65.

PMID:
17109379
20.

Supplemental Content

Support Center