Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 166

1.

High-Throughput Identification of Adaptive Mutations in Experimentally Evolved Yeast Populations.

Payen C, Sunshine AB, Ong GT, Pogachar JL, Zhao W, Dunham MJ.

PLoS Genet. 2016 Oct 11;12(10):e1006339. doi: 10.1371/journal.pgen.1006339. eCollection 2016 Oct.

2.

Differential paralog divergence modulates genome evolution across yeast species.

Sanchez MR, Miller AW, Liachko I, Sunshine AB, Lynch B, Huang M, Alcantara E, DeSevo CG, Pai DA, Tucker CM, Hoang ML, Dunham MJ.

PLoS Genet. 2017 Feb 14;13(2):e1006585. doi: 10.1371/journal.pgen.1006585. eCollection 2017 Feb.

3.

Heterozygote Advantage Is a Common Outcome of Adaptation in Saccharomyces cerevisiae.

Sellis D, Kvitek DJ, Dunn B, Sherlock G, Petrov DA.

Genetics. 2016 Jul;203(3):1401-13. doi: 10.1534/genetics.115.185165. Epub 2016 May 18.

4.

Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mutations in Yeast.

Venkataram S, Dunn B, Li Y, Agarwala A, Chang J, Ebel ER, Geiler-Samerotte K, Hérissant L, Blundell JR, Levy SF, Fisher DS, Sherlock G, Petrov DA.

Cell. 2016 Sep 8;166(6):1585-1596.e22. doi: 10.1016/j.cell.2016.08.002. Epub 2016 Sep 1.

5.

Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

Kishimoto T, Ying BW, Tsuru S, Iijima L, Suzuki S, Hashimoto T, Oyake A, Kobayashi H, Someya Y, Narisawa D, Yomo T.

PLoS Genet. 2015 Jul 15;11(7):e1005392. doi: 10.1371/journal.pgen.1005392. eCollection 2015 Jul.

6.

The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.

Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D, Dunham MJ.

PLoS Genet. 2008 Dec;4(12):e1000303. doi: 10.1371/journal.pgen.1000303. Epub 2008 Dec 12.

7.

Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments.

Hong J, Gresham D.

PLoS Genet. 2014 Jan;10(1):e1004041. doi: 10.1371/journal.pgen.1004041. Epub 2014 Jan 9.

8.

Sex enhances adaptation by unlinking beneficial from detrimental mutations in experimental yeast populations.

Gray JC, Goddard MR.

BMC Evol Biol. 2012 Mar 30;12:43. doi: 10.1186/1471-2148-12-43.

9.

Shifting fitness landscapes in response to altered environments.

Hietpas RT, Bank C, Jensen JD, Bolon DNA.

Evolution. 2013 Dec;67(12):3512-22. doi: 10.1111/evo.12207. Epub 2013 Aug 2.

10.

Hidden Complexity of Yeast Adaptation under Simple Evolutionary Conditions.

Li Y, Venkataram S, Agarwala A, Dunn B, Petrov DA, Sherlock G, Fisher DS.

Curr Biol. 2018 Feb 19;28(4):515-525.e6. doi: 10.1016/j.cub.2018.01.009. Epub 2018 Feb 8.

11.

The Influence of Polyploidy on the Evolution of Yeast Grown in a Sub-Optimal Carbon Source.

Scott AL, Richmond PA, Dowell RD, Selmecki AM.

Mol Biol Evol. 2017 Oct 1;34(10):2690-2703. doi: 10.1093/molbev/msx205.

12.

Comprehensive Analysis of the SUL1 Promoter of Saccharomyces cerevisiae.

Rich MS, Payen C, Rubin AF, Ong GT, Sanchez MR, Yachie N, Dunham MJ, Fields S.

Genetics. 2016 May;203(1):191-202. doi: 10.1534/genetics.116.188037. Epub 2016 Mar 2.

13.

The fates of mutant lineages and the distribution of fitness effects of beneficial mutations in laboratory budding yeast populations.

Frenkel EM, Good BH, Desai MM.

Genetics. 2014 Apr;196(4):1217-26. doi: 10.1534/genetics.113.160069. Epub 2014 Feb 10.

14.

The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection.

Payen C, Di Rienzi SC, Ong GT, Pogachar JL, Sanchez JC, Sunshine AB, Raghuraman MK, Brewer BJ, Dunham MJ.

G3 (Bethesda). 2014 Mar 20;4(3):399-409. doi: 10.1534/g3.113.009365.

15.

The Valley-of-Death: reciprocal sign epistasis constrains adaptive trajectories in a constant, nutrient limiting environment.

Chiotti KE, Kvitek DJ, Schmidt KH, Koniges G, Schwartz K, Donckels EA, Rosenzweig F, Sherlock G.

Genomics. 2014 Dec;104(6 Pt A):431-7. doi: 10.1016/j.ygeno.2014.10.011. Epub 2014 Nov 1.

16.

The fitness consequences of aneuploidy are driven by condition-dependent gene effects.

Sunshine AB, Payen C, Ong GT, Liachko I, Tan KM, Dunham MJ.

PLoS Biol. 2015 May 26;13(5):e1002155. doi: 10.1371/journal.pbio.1002155. eCollection 2015 May.

17.

Experimental Evolution and Resequencing Analysis of Yeast.

Payen C, Dunham MJ.

Methods Mol Biol. 2016;1361:361-74. doi: 10.1007/978-1-4939-3079-1_20.

PMID:
26483032
18.

Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity.

Kryazhimskiy S, Rice DP, Jerison ER, Desai MM.

Science. 2014 Jun 27;344(6191):1519-1522. doi: 10.1126/science.1250939.

19.

The environment affects epistatic interactions to alter the topology of an empirical fitness landscape.

Flynn KM, Cooper TF, Moore FB, Cooper VS.

PLoS Genet. 2013 Apr;9(4):e1003426. doi: 10.1371/journal.pgen.1003426. Epub 2013 Apr 4.

20.

Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape.

Kvitek DJ, Sherlock G.

PLoS Genet. 2011 Apr;7(4):e1002056. doi: 10.1371/journal.pgen.1002056. Epub 2011 Apr 28.

Supplemental Content

Support Center