Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 54

1.

Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum.

Mousa WK, Shearer C, Limay-Rios V, Ettinger CL, Eisen JA, Raizada MN.

Nat Microbiol. 2016 Sep 26;1:16167. doi: 10.1038/nmicrobiol.2016.167.

PMID:
27669453
2.

An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

Mousa WK, Schwan A, Davidson J, Strange P, Liu H, Zhou T, Auzanneau FI, Raizada MN.

Front Microbiol. 2015 Oct 21;6:1157. doi: 10.3389/fmicb.2015.01157. eCollection 2015.

3.

Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana).

Mousa WK, Schwan AL, Raizada MN.

Molecules. 2016 Sep 3;21(9). pii: E1171. doi: 10.3390/molecules21091171.

4.
5.
6.

Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation.

Mousa WK, Shearer CR, Limay-Rios V, Zhou T, Raizada MN.

Front Plant Sci. 2015 Oct 6;6:805. doi: 10.3389/fpls.2015.00805. eCollection 2015.

7.

Fusarium graminearum: pathogen or endophyte of North American grasses?

Lofgren LA, LeBlanc NR, Certano AK, Nachtigall J, LaBine KM, Riddle J, Broz K, Dong Y, Bethan B, Kafer CW, Kistler HC.

New Phytol. 2018 Feb;217(3):1203-1212. doi: 10.1111/nph.14894. Epub 2017 Nov 21.

8.
9.

Systemic growth of F. graminearum in wheat plants and related accumulation of deoxynivalenol.

Moretti A, Panzarini G, Somma S, Campagna C, Ravaglia S, Logrieco AF, Solfrizzo M.

Toxins (Basel). 2014 Apr 10;6(4):1308-24. doi: 10.3390/toxins6041308.

10.

Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat.

Qi PF, Johnston A, Balcerzak M, Rocheleau H, Harris LJ, Long XY, Wei YM, Zheng YL, Ouellet T.

Fungal Biol. 2012 Mar;116(3):413-26. doi: 10.1016/j.funbio.2012.01.001. Epub 2012 Jan 16.

PMID:
22385623
11.
12.

Insights Into Triticum aestivum Seedling Root Rot Caused by Fusarium graminearum.

Wang Q, Vera Buxa S, Furch A, Friedt W, Gottwald S.

Mol Plant Microbe Interact. 2015 Dec;28(12):1288-303. doi: 10.1094/MPMI-07-15-0144-R. Epub 2015 Dec 8.

13.

Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host.

Rodriguez Estrada AE, Jonkers W, Kistler HC, May G.

Fungal Genet Biol. 2012 Jul;49(7):578-87. doi: 10.1016/j.fgb.2012.05.001. Epub 2012 May 12.

PMID:
22587948
14.

Fusarium graminearum Possesses Virulence Factors Common to Fusarium Head Blight of Wheat and Seedling Rot of Soybean but Differing in Their Impact on Disease Severity.

Sella L, Gazzetti K, Castiglioni C, Schäfer W, Favaron F.

Phytopathology. 2014 Nov;104(11):1201-7. doi: 10.1094/PHYTO-12-13-0355-R.

16.

Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol.

Blümke A, Sode B, Ellinger D, Voigt CA.

Mol Plant Pathol. 2015 Jun;16(5):472-83. doi: 10.1111/mpp.12203. Epub 2014 Oct 22.

17.

BDM1, a phosducin-like gene of Fusarium graminearum, is involved in virulence during infection of wheat and maize.

Horevaj P, Bluhm BH.

Mol Plant Pathol. 2012 Jun;13(5):431-44. doi: 10.1111/j.1364-3703.2011.00758.x. Epub 2011 Nov 1.

PMID:
22044756
18.

The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum.

Van Thuat N, Schäfer W, Bormann J.

Mol Plant Microbe Interact. 2012 Sep;25(9):1142-56. doi: 10.1094/MPMI-02-12-0047-R.

19.
20.

Fusarium graminearum and Its Interactions with Cereal Heads: Studies in the Proteomics Era.

Yang F, Jacobsen S, Jørgensen HJ, Collinge DB, Svensson B, Finnie C.

Front Plant Sci. 2013 Feb 28;4:37. doi: 10.3389/fpls.2013.00037. eCollection 2013.

Supplemental Content

Support Center