Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

High-Frequency Nanocapacitor Arrays: Concept, Recent Developments, and Outlook.

Lemay SG, Laborde C, Renault C, Cossettini A, Selmi L, Widdershoven FP.

Acc Chem Res. 2016 Oct 18;49(10):2355-2362. Epub 2016 Sep 19.

PMID:
27643695
2.

Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

Hill NJ, Gupta D, Brunner P, Gunduz A, Adamo MA, Ritaccio A, Schalk G.

J Vis Exp. 2012 Jun 26;(64). pii: 3993. doi: 10.3791/3993.

3.

A CMOS Pixelated Nanocapacitor Biosensor Platform for High-Frequency Impedance Spectroscopy and Imaging.

Widdershoven F, Cossettini A, Laborde C, Bandiziol A, van Swinderen PP, Lemay SG, Selmi L.

IEEE Trans Biomed Circuits Syst. 2018 Jul 30. doi: 10.1109/TBCAS.2018.2861558. [Epub ahead of print]

PMID:
30059320
4.

In Vivo Observations of Rapid Scattered Light Changes Associated with Neurophysiological Activity.

Rector DM, Yao X, Harper RM, George JS.

In: Frostig RD, editor. In Vivo Optical Imaging of Brain Function. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 5.

5.

Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays.

Laborde C, Pittino F, Verhoeven HA, Lemay SG, Selmi L, Jongsma MA, Widdershoven FP.

Nat Nanotechnol. 2015 Sep;10(9):791-5. doi: 10.1038/nnano.2015.163. Epub 2015 Aug 3.

PMID:
26237346
6.

Engineering Aspects of Olfaction.

Persaud KC.

In: Persaud KC, Marco S, Gutiérrez-Gálvez A, editors. Neuromorphic Olfaction. Boca Raton (FL): CRC Press/Taylor & Francis; 2013. Chapter 1.

7.

Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

Abbott J, Ye T, Ham D, Park H.

Acc Chem Res. 2018 Mar 20;51(3):600-608. doi: 10.1021/acs.accounts.7b00519. Epub 2018 Feb 13.

PMID:
29437381
8.

Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.

Heida T.

Adv Anat Embryol Cell Biol. 2003;173:III-IX, 1-77. Review.

PMID:
12901336
9.

Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Foffi G, Pastore A, Piazza F, Temussi PA.

Phys Biol. 2013 Aug 2;10(4):040301. [Epub ahead of print]

PMID:
23912807
10.

One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor.

Lee KH, Lee JO, Sohn MJ, Lee B, Choi SH, Kim SK, Yoon JB, Cho GH.

Biosens Bioelectron. 2010 Dec 15;26(4):1373-9. doi: 10.1016/j.bios.2010.07.055. Epub 2010 Jul 21.

PMID:
20692155
11.

Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification.

Wolahan SM, Hirt D, Glenn TC.

In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 25.

12.

Charge transport in nanoscale junctions.

Albrecht T, Kornyshev A, Bjørnholm T.

J Phys Condens Matter. 2008 Sep 3;20(37):370301. doi: 10.1088/0953-8984/20/37/370301. Epub 2008 Aug 6.

PMID:
21694407
13.

5×5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine.

Lu MS, Chen YC, Huang PC.

Biosens Bioelectron. 2010 Nov 15;26(3):1093-7. doi: 10.1016/j.bios.2010.08.065. Epub 2010 Sep 19.

PMID:
20855189
14.

Single-molecule electrochemistry: present status and outlook.

Lemay SG, Kang S, Mathwig K, Singh PS.

Acc Chem Res. 2013 Feb 19;46(2):369-77. doi: 10.1021/ar300169d. Epub 2012 Dec 27.

PMID:
23270398
15.

Fully integrated CMOS microsystem for electrochemical measurements on 32 × 32 working electrodes at 90 frames per second.

Rothe J, Frey O, Stettler A, Chen Y, Hierlemann A.

Anal Chem. 2014 Jul 1;86(13):6425-32. doi: 10.1021/ac500862v. Epub 2014 Jun 18.

16.

Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.

Fang Y, Wang H, Yu H, Liu X, Wang W, Chen HY, Tao NJ.

Acc Chem Res. 2016 Nov 15;49(11):2614-2624. Epub 2016 Sep 23.

PMID:
27662069
17.

Amperometric electrochemical microsystem for a miniaturized protein biosensor array.

Chao Yang, Yue Huang, Hassler BL, Worden RM, Mason AJ.

IEEE Trans Biomed Circuits Syst. 2009 Jun;3(3):160-8. doi: 10.1109/TBCAS.2009.2015650.

PMID:
23853217
18.

Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.

de Asis ED Jr, Leung J, Wood S, Nguyen CV.

Nanotechnology. 2010 Mar 26;21(12):125101. doi: 10.1088/0957-4484/21/12/125101. Epub 2010 Feb 25.

PMID:
20182008
19.

Electrochemical impedance measurement of a carbon nanotube probe electrode.

Inaba A, Takei Y, Kan T, Matsumoto K, Shimoyama I.

Nanotechnology. 2012 Dec 7;23(48):485302. doi: 10.1088/0957-4484/23/48/485302. Epub 2012 Nov 2.

PMID:
23124171
20.

Ionic liquids as green solvents and electrolytes for robust chemical sensor development.

Rehman A, Zeng X.

Acc Chem Res. 2012 Oct 16;45(10):1667-77. doi: 10.1021/ar200330v. Epub 2012 Aug 15.

PMID:
22891895

Supplemental Content

Support Center