Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Fluorocoxib A enables targeted detection of cyclooxygenase-2 in laser-induced choroidal neovascularization.

Uddin MJ, Moore CE, Crews BC, Daniel CK, Ghebreselasie K, McIntyre JO, Marnett LJ, Jayagopal A.

J Biomed Opt. 2016 Sep 1;21(9):90503. doi: 10.1117/1.JBO.21.9.090503.

2.

Molecular imaging of cyclooxygenase-2 in canine transitional cell carcinomas in vitro and in vivo.

Cekanova M, Uddin MJ, Bartges JW, Callens A, Legendre AM, Rathore K, Wright L, Carter A, Marnett LJ.

Cancer Prev Res (Phila). 2013 May;6(5):466-76. doi: 10.1158/1940-6207.CAPR-12-0358. Epub 2013 Mar 26.

3.

Single-dose safety and pharmacokinetic evaluation of fluorocoxib A: pilot study of novel cyclooxygenase-2-targeted optical imaging agent in a canine model.

Cekanova M, Uddin MJ, Legendre AM, Galyon G, Bartges JW, Callens A, Martin-Jimenez T, Marnett LJ.

J Biomed Opt. 2012 Nov;17(11):116002. doi: 10.1117/1.JBO.17.11.116002.

4.

Detection of non-melanoma skin cancer by in vivo fluorescence imaging with fluorocoxib A.

Ra H, González-González E, Uddin MJ, King BL, Lee A, Ali-Khan I, Marnett LJ, Tang JY, Contag CH.

Neoplasia. 2015 Feb;17(2):201-7. doi: 10.1016/j.neo.2014.12.009.

5.

Fluorocoxib A loaded nanoparticles enable targeted visualization of cyclooxygenase-2 in inflammation and cancer.

Uddin MJ, Werfel TA, Crews BC, Gupta MK, Kavanaugh TE, Kingsley PJ, Boyd K, Marnett LJ, Duvall CL.

Biomaterials. 2016 Jun;92:71-80. doi: 10.1016/j.biomaterials.2016.03.028. Epub 2016 Mar 21.

6.

Trifluoromethyl fluorocoxib a detects cyclooxygenase-2 expression in inflammatory tissues and human tumor xenografts.

Uddin MJ, Crews BC, Huda I, Ghebreselasie K, Daniel CK, Marnett LJ.

ACS Med Chem Lett. 2014 Jan 23;5(4):446-50. doi: 10.1021/ml400485g. eCollection 2014 Apr 10.

7.

Optical imaging of COX-2: studies on an autofluorescent 2,3-diaryl-substituted indole-based cyclooxygenase-2 inhibitor.

Tondera C, Ullm S, Laube M, Meister S, Neuber C, Mosch B, Kniess T, Pietzsch J.

Biochem Biophys Res Commun. 2015 Feb 27;458(1):40-5. doi: 10.1016/j.bbrc.2015.01.057. Epub 2015 Jan 27.

PMID:
25637530
8.

Expression of cyclooxygenase-2 in choroidal neovascular membranes from age-related macular degeneration patients.

Maloney SC, Fernandes BF, Castiglione E, Antecka E, Martins C, Marshall JC, Di Cesare S, Logan P, Burnier MN Jr.

Retina. 2009 Feb;29(2):176-80. doi: 10.1097/IAE.0b013e3181884fa6.

PMID:
18827739
9.

Targeted imaging of cancer by fluorocoxib C, a near-infrared cyclooxygenase-2 probe.

Uddin MJ, Crews BC, Ghebreselasie K, Daniel CK, Kingsley PJ, Xu S, Marnett LJ.

J Biomed Opt. 2015 May;20(5):50502. doi: 10.1117/1.JBO.20.5.050502.

10.
11.

Apatinib, an Inhibitor of Vascular Endothelial Growth Factor Receptor 2, Suppresses Pathologic Ocular Neovascularization in Mice.

Kim KL, Suh W.

Invest Ophthalmol Vis Sci. 2017 Jul 1;58(9):3592-3599. doi: 10.1167/iovs.17-21416.

PMID:
28715845
12.

FGF21 Administration Suppresses Retinal and Choroidal Neovascularization in Mice.

Fu Z, Gong Y, Liegl R, Wang Z, Liu CH, Meng SS, Burnim SB, Saba NJ, Fredrick TW, Morss PC, Hellstrom A, Talukdar S, Smith LE.

Cell Rep. 2017 Feb 14;18(7):1606-1613. doi: 10.1016/j.celrep.2017.01.014.

13.

Rap1 GTPase activation and barrier enhancement in rpe inhibits choroidal neovascularization in vivo.

Wittchen ES, Nishimura E, McCloskey M, Wang H, Quilliam LA, Chrzanowska-Wodnicka M, Hartnett ME.

PLoS One. 2013 Sep 10;8(9):e73070. doi: 10.1371/journal.pone.0073070. eCollection 2013.

15.

In vivo imaging of choroidal angiogenesis using fluorescence-labeled cationic liposomes.

Hua J, Gross N, Schulze B, Michaelis U, Bohnenkamp H, Guenzi E, Hansen LL, Martin G, Agostini HT.

Mol Vis. 2012;18:1045-54. Epub 2012 Apr 26.

16.

Reduced choroidal neovascular membrane formation in cyclooxygenase-2 null mice.

Rezaei KA, Toma HS, Cai J, Penn JS, Sternberg P, Kim SJ.

Invest Ophthalmol Vis Sci. 2011 Feb 3;52(2):701-7. doi: 10.1167/iovs.10-6319. Print 2011 Feb.

17.

Inhibition of APE1/Ref-1 redox activity rescues human retinal pigment epithelial cells from oxidative stress and reduces choroidal neovascularization.

Li Y, Liu X, Zhou T, Kelley MR, Edwards P, Gao H, Qiao X.

Redox Biol. 2014 Feb 21;2:485-94. doi: 10.1016/j.redox.2014.01.023. eCollection 2014.

18.

Agents that bind annexin A2 suppress ocular neovascularization.

Lima e Silva R, Shen J, Gong YY, Seidel CP, Hackett SF, Kesavan K, Jacoby DB, Campochiaro PA.

J Cell Physiol. 2010 Nov;225(3):855-64. doi: 10.1002/jcp.22296.

19.

Inhibition of retinal and choroidal neovascularization by a novel KDR kinase inhibitor.

Kinose F, Roscilli G, Lamartina S, Anderson KD, Bonelli F, Spence SG, Ciliberto G, Vogt TF, Holder DJ, Toniatti C, Thut CJ.

Mol Vis. 2005 May 27;11:366-73.

20.

The HIF-1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization.

Zeng M, Shen J, Liu Y, Lu LY, Ding K, Fortmann SD, Khan M, Wang J, Hackett SF, Semenza GL, Campochiaro PA.

J Mol Med (Berl). 2017 Apr;95(4):417-429. doi: 10.1007/s00109-016-1498-9. Epub 2016 Dec 21.

Supplemental Content

Support Center