Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Barium sulfate micro- and nanoparticles as bioinert reference material in particle toxicology.

Loza K, Föhring I, Bünger J, Westphal GA, Köller M, Epple M, Sengstock C.

Nanotoxicology. 2016 Dec;10(10):1492-1502. Epub 2016 Sep 27.

PMID:
27615202
2.

Kinetics of chemotaxis, cytokine, and chemokine release of NR8383 macrophages after exposure to inflammatory and inert granular insoluble particles.

Schremmer I, Brik A, Weber DG, Rosenkranz N, Rostek A, Loza K, Brüning T, Johnen G, Epple M, Bünger J, Westphal GA.

Toxicol Lett. 2016 Nov 30;263:68-75. doi: 10.1016/j.toxlet.2016.08.014. Epub 2016 Aug 24.

PMID:
27565850
3.

Particle-induced cell migration assay (PICMA): A new in vitro assay for inflammatory particle effects based on permanent cell lines.

Westphal GA, Schremmer I, Rostek A, Loza K, Rosenkranz N, Brüning T, Epple M, Bünger J.

Toxicol In Vitro. 2015 Aug;29(5):997-1005. doi: 10.1016/j.tiv.2015.04.005. Epub 2015 Apr 18.

4.

A systematic electron microscopic study on the uptake of barium sulphate nano-, submicro-, microparticles by bone marrow-derived phagocytosing cells.

Sokolova V, Loza K, Knuschke T, Heinen-Weiler J, Jastrow H, Hasenberg M, Buer J, Westendorf AM, Gunzer M, Epple M.

Acta Biomater. 2018 Oct 15;80:352-363. doi: 10.1016/j.actbio.2018.09.026. Epub 2018 Sep 18.

PMID:
30240952
5.

Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms.

Scherbart AM, Langer J, Bushmelev A, van Berlo D, Haberzettl P, van Schooten FJ, Schmidt AM, Rose CR, Schins RP, Albrecht C.

Part Fibre Toxicol. 2011 Oct 13;8:31. doi: 10.1186/1743-8977-8-31.

6.

Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.

Sayes CM, Reed KL, Warheit DB.

Toxicol Sci. 2007 May;97(1):163-80. Epub 2007 Feb 14.

PMID:
17301066
7.

Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo.

Liu R, Zhang X, Pu Y, Yin L, Li Y, Zhang X, Liang G, Li X, Zhang J.

J Nanosci Nanotechnol. 2010 Aug;10(8):5161-9.

PMID:
21125865
8.

Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages.

Sandberg WJ, Låg M, Holme JA, Friede B, Gualtieri M, Kruszewski M, Schwarze PE, Skuland T, Refsnes M.

Part Fibre Toxicol. 2012 Aug 10;9:32. doi: 10.1186/1743-8977-9-32.

9.

Interaction of rat alveolar macrophages with dental composite dust.

Van Landuyt KL, Cokic SM, Asbach C, Hoet P, Godderis L, Reichl FX, Van Meerbeek B, Vennemann A, Wiemann M.

Part Fibre Toxicol. 2016 Nov 26;13(1):62.

10.

Inhalation of high concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation.

Warheit DB, Hansen JF, Yuen IS, Kelly DP, Snajdr SI, Hartsky MA.

Toxicol Appl Pharmacol. 1997 Jul;145(1):10-22.

PMID:
9221819
11.

Actin plays a crucial role in the phagocytosis and biological response to respirable quartz particles in macrophages.

Haberzettl P, Duffin R, Krämer U, Höhr D, Schins RP, Borm PJ, Albrecht C.

Arch Toxicol. 2007 Jul;81(7):459-70. Epub 2007 Mar 21.

PMID:
17375287
12.

The immune toxicity of titanium dioxide on primary pulmonary alveolar macrophages relies on their surface area and crystal structure.

Liu R, Yin LH, Pu YP, Li YH, Zhang XQ, Liang GY, Li XB, Zhang J, Li YF, Zhang XY.

J Nanosci Nanotechnol. 2010 Dec;10(12):8491-9.

PMID:
21121358
13.

Rat lung inflammatory responses after in vivo and in vitro exposure to various stone particles.

Becher R, Hetland RB, Refsnes M, Dahl JE, Dahlman HJ, Schwarze PE.

Inhal Toxicol. 2001 Sep;13(9):789-805.

PMID:
11498806
14.

Surface-dependent quartz uptake by macrophages: potential role in pulmonary inflammation and lung clearance.

Albrecht C, Höhr D, Haberzettl P, Becker A, Borm PJ, Schins RP.

Inhal Toxicol. 2007;19 Suppl 1:39-48.

PMID:
17886049
15.

Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.

Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ.

J Phys Chem B. 2008 Oct 30;112(43):13608-19. doi: 10.1021/jp712087m. Epub 2008 Oct 3.

PMID:
18831567
16.
17.

Cerium oxide and barium sulfate nanoparticle inhalation affects gene expression in alveolar epithelial cells type II.

Schwotzer D, Niehof M, Schaudien D, Kock H, Hansen T, Dasenbrock C, Creutzenberg O.

J Nanobiotechnology. 2018 Feb 20;16(1):16. doi: 10.1186/s12951-018-0343-4.

18.

The alarmin IL-1α is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles.

Rabolli V, Badissi AA, Devosse R, Uwambayinema F, Yakoub Y, Palmai-Pallag M, Lebrun A, De Gussem V, Couillin I, Ryffel B, Marbaix E, Lison D, Huaux F.

Part Fibre Toxicol. 2014 Dec 13;11:69. doi: 10.1186/s12989-014-0069-x.

19.
20.

Lipopolysaccharide priming amplifies lung macrophage tumor necrosis factor production in response to air particles.

Imrich A, Ning YY, Koziel H, Coull B, Kobzik L.

Toxicol Appl Pharmacol. 1999 Sep 1;159(2):117-24.

PMID:
10495775

Supplemental Content

Support Center