Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 204

1.

CRISPR/Cas9-mediated knockout of p22phox leads to loss of Nox1 and Nox4, but not Nox5 activity.

Prior KK, Leisegang MS, Josipovic I, Löwe O, Shah AM, Weissmann N, Schröder K, Brandes RP.

Redox Biol. 2016 Oct;9:287-295. doi: 10.1016/j.redox.2016.08.013. Epub 2016 Aug 24.

2.

Cytochrome P450 enzymes but not NADPH oxidases are the source of the NADPH-dependent lucigenin chemiluminescence in membrane assays.

Rezende F, Prior KK, Löwe O, Wittig I, Strecker V, Moll F, Helfinger V, Schnütgen F, Kurrle N, Wempe F, Walter M, Zukunft S, Luck B, Fleming I, Weissmann N, Brandes RP, Schröder K.

Free Radic Biol Med. 2017 Jan;102:57-66. doi: 10.1016/j.freeradbiomed.2016.11.019. Epub 2016 Nov 15.

3.

Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation.

Kawahara T, Ritsick D, Cheng G, Lambeth JD.

J Biol Chem. 2005 Sep 9;280(36):31859-69. Epub 2005 Jun 30.

4.

Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production.

Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harrison DG, Griendling KK.

Free Radic Biol Med. 2008 Nov 1;45(9):1340-51. doi: 10.1016/j.freeradbiomed.2008.08.013. Epub 2008 Aug 16.

5.

Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase.

Gandara ACP, Torres A, Bahia AC, Oliveira PL, Schama R.

BMC Evol Biol. 2017 Mar 29;17(1):92. doi: 10.1186/s12862-017-0940-0. Erratum in: BMC Evol Biol. 2017 Aug 21;17 (1):196.

6.

NADPH oxidase NOX4 is a glycolytic regulator through mROS-HIF1α axis in thyroid carcinomas.

Tang P, Dang H, Huang J, Xu T, Yuan P, Hu J, Sheng JF.

Sci Rep. 2018 Oct 26;8(1):15897. doi: 10.1038/s41598-018-34154-8.

7.

Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes.

Manea SA, Antonescu ML, Fenyo IM, Raicu M, Simionescu M, Manea A.

Redox Biol. 2018 Jun;16:332-343. doi: 10.1016/j.redox.2018.03.011. Epub 2018 Mar 17.

8.

Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase.

Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP.

J Biol Chem. 2004 Oct 29;279(44):45935-41. Epub 2004 Aug 18.

9.

Differential cell surface recruitment of the superoxide-producing NADPH oxidases Nox1, Nox2 and Nox5: The role of the small GTPase Sar1.

Kiyohara T, Miyano K, Kamakura S, Hayase J, Chishiki K, Kohda A, Sumimoto H.

Genes Cells. 2018 Jun;23(6):480-493. doi: 10.1111/gtc.12590. Epub 2018 May 2.

10.

Quantitative interaction analysis permits molecular insights into functional NOX4 NADPH oxidase heterodimer assembly.

O'Neill S, Mathis M, Kovačič L, Zhang S, Reinhardt J, Scholz D, Schopfer U, Bouhelal R, Knaus UG.

J Biol Chem. 2018 Jun 8;293(23):8750-8760. doi: 10.1074/jbc.RA117.001045. Epub 2018 Apr 19.

11.

Transcriptional regulation of NOX genes express ion in human breast adenocarcinoma MCF-7 cells is modulated by adaptor protein Ruk/CIN 85.

Bazalii AV, Horak IR, Pasi chn yk GV, Komisarenko SV, Drobot LB.

Ukr Biochem J. 2016 Jan-Feb;88(1):119-25. doi: 10.15407/ubj88.01.119.

PMID:
29227594
12.

BIAM switch assay coupled to mass spectrometry identifies novel redox targets of NADPH oxidase 4.

Löwe O, Rezende F, Heidler J, Wittig I, Helfinger V, Brandes RP, Schröder K.

Redox Biol. 2019 Feb;21:101125. doi: 10.1016/j.redox.2019.101125. Epub 2019 Jan 29.

13.

Mammalian NADPH Oxidases.

Buvelot H, Jaquet V, Krause KH.

Methods Mol Biol. 2019;1982:17-36. doi: 10.1007/978-1-4939-9424-3_2. Review.

PMID:
31172464
14.

Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5.

Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD.

Gene. 2001 May 16;269(1-2):131-40.

PMID:
11376945
15.

Interaction between p22phox and Nox4 in the endoplasmic reticulum suggests a unique mechanism of NADPH oxidase complex formation.

Zana M, Péterfi Z, Kovács HA, Tóth ZE, Enyedi B, Morel F, Paclet MH, Donkó Á, Morand S, Leto TL, Geiszt M.

Free Radic Biol Med. 2018 Feb 20;116:41-49. doi: 10.1016/j.freeradbiomed.2017.12.031. Epub 2017 Dec 24.

PMID:
29278739
16.

NADPH oxidase 4 function as a hydrogen peroxide sensor.

Nisimoto Y, Ogawa H, Kadokawa Y, Qiao S.

J Biochem. 2018 Jun 1;163(6):489-501. doi: 10.1093/jb/mvy014.

PMID:
29365138
17.

Differential effects of NOX4 and NOX1 on immune cell-mediated inflammation in the aortic sinus of diabetic ApoE-/- mice.

Di Marco E, Gray SP, Chew P, Kennedy K, Cooper ME, Schmidt HH, Jandeleit-Dahm KA.

Clin Sci (Lond). 2016 Aug 1;130(15):1363-74. doi: 10.1042/CS20160249. Epub 2016 May 17.

PMID:
27190136
18.

Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5.

Montezano AC, Burger D, Ceravolo GS, Yusuf H, Montero M, Touyz RM.

Clin Sci (Lond). 2011 Feb;120(4):131-41. doi: 10.1042/CS20100384. Review.

PMID:
21039341
19.

NADPH oxidase 4 is an oncoprotein localized to mitochondria.

Graham KA, Kulawiec M, Owens KM, Li X, Desouki MM, Chandra D, Singh KK.

Cancer Biol Ther. 2010 Aug 1;10(3):223-31. Epub 2010 Aug 3.

20.

The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4.

Takac I, Schröder K, Zhang L, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP.

J Biol Chem. 2011 Apr 15;286(15):13304-13. doi: 10.1074/jbc.M110.192138. Epub 2011 Feb 22.

Supplemental Content

Support Center