Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Integrated Analysis of DNA Methylation and mRNA Expression Profiles Data to Identify Key Genes in Lung Adenocarcinoma.

Jin X, Liu X, Li X, Guan Y.

Biomed Res Int. 2016;2016:4369431. doi: 10.1155/2016/4369431. Epub 2016 Aug 17.

2.

Construction of a 26‑feature gene support vector machine classifier for smoking and non‑smoking lung adenocarcinoma sample classification.

Yang L, Sun L, Wang W, Xu H, Li Y, Zhao JY, Liu DZ, Wang F, Zhang LY.

Mol Med Rep. 2018 Feb;17(2):3005-3013. doi: 10.3892/mmr.2017.8220. Epub 2017 Dec 7.

3.

Identification of differentially expressed genes between lung adenocarcinoma and lung squamous cell carcinoma by gene expression profiling.

Lu C, Chen H, Shan Z, Yang L.

Mol Med Rep. 2016 Aug;14(2):1483-90. doi: 10.3892/mmr.2016.5420. Epub 2016 Jun 22.

4.

Identification of stage-specific biomarkers in lung adenocarcinoma based on RNA-seq data.

Liang J, Lv J, Liu Z.

Tumour Biol. 2015 Aug;36(8):6391-9. doi: 10.1007/s13277-015-3327-0. Epub 2015 Apr 11.

PMID:
25861020
5.

Integrated analysis of the gene expression profile and DNA methylation profile of obese patients with type 2 diabetes.

Shen J, Zhu B.

Mol Med Rep. 2018 Jun;17(6):7636-7644. doi: 10.3892/mmr.2018.8804. Epub 2018 Mar 28.

6.

Identification of differential protein-coding gene expressions in early phase lung adenocarcinoma.

Zhou LN, Li SC, Li XY, Ge H, Li HM.

Thorac Cancer. 2018 Feb;9(2):234-240. doi: 10.1111/1759-7714.12569. Epub 2017 Dec 20.

7.

A novel strategy of integrated microarray analysis identifies CENPA, CDK1 and CDC20 as a cluster of diagnostic biomarkers in lung adenocarcinoma.

Liu WT, Wang Y, Zhang J, Ye F, Huang XH, Li B, He QY.

Cancer Lett. 2018 Jul 1;425:43-53. doi: 10.1016/j.canlet.2018.03.043. Epub 2018 Mar 31.

PMID:
29608985
8.

Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.

Wen P, Chidanguro T, Shi Z, Gu H, Wang N, Wang T, Li Y, Gao J.

Mol Med Rep. 2018 Aug;18(2):1538-1550. doi: 10.3892/mmr.2018.9095. Epub 2018 May 29.

9.

Gene expression profiling analysis of lung adenocarcinoma.

Xu H, Ma J, Wu J, Chen L, Sun F, Qu C, Zheng D, Xu S.

Braz J Med Biol Res. 2016 Mar;49(3). pii: S0100-879X2016000300601. doi: 10.1590/1414-431X20154861. Epub 2016 Feb 2.

10.

Integrated analysis reveals candidate genes and transcription factors in lung adenocarcinoma.

Chen B, Gao S, Ji C, Song G.

Mol Med Rep. 2017 Dec;16(6):8371-8379. doi: 10.3892/mmr.2017.7656. Epub 2017 Sep 28.

PMID:
28983631
11.

Exploring the molecular mechanisms of osteosarcoma by the integrated analysis of mRNAs and miRNA microarrays.

Shen H, Wang W, Ni B, Zou Q, Lu H, Wang Z.

Int J Mol Med. 2018 Jul;42(1):21-30. doi: 10.3892/ijmm.2018.3594. Epub 2018 Mar 27.

12.

Identification of key pathways and genes in Barrett's esophagus using integrated bioinformatics methods.

Zhang C, Shen Y, Wang J, Zhou M, Chen Y.

Mol Med Rep. 2018 Feb;17(2):3069-3077. doi: 10.3892/mmr.2017.8274. Epub 2017 Dec 12.

13.

Abnormal gene expression and gene fusion in lung adenocarcinoma with high-throughput RNA sequencing.

Yang ZH, Zheng R, Gao Y, Zhang Q, Zhang H.

Cancer Gene Ther. 2014 Feb;21(2):74-82. doi: 10.1038/cgt.2013.86. Epub 2014 Feb 7. Retraction in: Cancer Gene Ther. 2016 Feb-Mar;23(2-3):72.

PMID:
24503571
14.

Bioinformatics analysis of gene expression profile data to screen key genes involved in pulmonary sarcoidosis.

Li H, Zhao X, Wang J, Zong M, Yang H.

Gene. 2017 Jan 5;596:98-104. doi: 10.1016/j.gene.2016.09.037. Epub 2016 Sep 25.

PMID:
27682024
15.

Integrated analysis of DNA methylation and RNA‑sequencing data in Down syndrome.

Zhang J, Zhou W, Liu Y, Li N.

Mol Med Rep. 2016 Nov;14(5):4309-4314. doi: 10.3892/mmr.2016.5778. Epub 2016 Sep 26.

PMID:
27667480
16.

Gene expression analysis of lung adenocarcinoma and matched adjacent non-tumor lung tissue.

Zhang W, Gong W, Ai H, Tang J, Shen C.

Tumori. 2014 May-Jun;100(3):338-45. doi: 10.1700/1578.17222.

PMID:
25076248
17.

Identification of genes involved in the four stages of colorectal cancer: Gene expression profiling.

Shi G, Wang Y, Zhang C, Zhao Z, Sun X, Zhang S, Fan J, Zhou C, Zhang J, Zhang H, Liu J.

Mol Cell Probes. 2018 Feb;37:39-47. doi: 10.1016/j.mcp.2017.11.004. Epub 2017 Nov 24.

PMID:
29179987
18.

Bioinformatics analysis of gene expression profiles of esophageal squamous cell carcinoma.

He Y, Liu J, Zhao Z, Zhao H.

Dis Esophagus. 2017 May 1;30(5):1-8. doi: 10.1093/dote/dow018.

PMID:
28375447
19.

Genome-wide analysis of aberrant gene expression and methylation profiles reveals susceptibility genes and underlying mechanism of cervical cancer.

Lin H, Ma Y, Wei Y, Shang H.

Eur J Obstet Gynecol Reprod Biol. 2016 Dec;207:147-152. doi: 10.1016/j.ejogrb.2016.10.017. Epub 2016 Oct 26.

PMID:
27863272
20.

Identification of key genes associated with bladder cancer using gene expression profiles.

Han Y, Jin X, Zhou H, Liu B.

Oncol Lett. 2018 Jan;15(1):297-303. doi: 10.3892/ol.2017.7310. Epub 2017 Oct 31.

Supplemental Content

Support Center