Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

The role of water on the structure and mechanical properties of a thermoplastic natural block co-polymer from squid sucker ring teeth.

Rieu C, Bertinetti L, Schuetz R, Salinas-Zavala CC, Weaver JC, Fratzl P, Miserez A, Masic A.

Bioinspir Biomim. 2016 Sep 2;11(5):055003. doi: 10.1088/1748-3190/11/5/055003.

PMID:
27588938
2.

Multi-scale thermal stability of a hard thermoplastic protein-based material.

Latza V, Guerette PA, Ding D, Amini S, Kumar A, Schmidt I, Keating S, Oxman N, Weaver JC, Fratzl P, Miserez A, Masic A.

Nat Commun. 2015 Sep 21;6:8313. doi: 10.1038/ncomms9313.

3.

Modular peptides from the thermoplastic squid sucker ring teeth form amyloid-like cross-β supramolecular networks.

Hiew SH, Guerette PA, Zvarec OJ, Phillips M, Zhou F, Su H, Pervushin K, Orner BP, Miserez A.

Acta Biomater. 2016 Dec;46:41-54. doi: 10.1016/j.actbio.2016.09.040. Epub 2016 Sep 29.

PMID:
27693688
4.

Biomimetic production of silk-like recombinant squid sucker ring teeth proteins.

Ding D, Guerette PA, Hoon S, Kong KW, Cornvik T, Nilsson M, Kumar A, Lescar J, Miserez A.

Biomacromolecules. 2014 Sep 8;15(9):3278-89. doi: 10.1021/bm500670r. Epub 2014 Aug 5.

PMID:
25068184
5.

Squid Suckerin Biomimetic Peptides Form Amyloid-like Crystals with Robust Mechanical Properties.

Hiew SH, Sánchez-Ferrer A, Amini S, Zhou F, Adamcik J, Guerette P, Su H, Mezzenga R, Miserez A.

Biomacromolecules. 2017 Dec 11;18(12):4240-4248. doi: 10.1021/acs.biomac.7b01280. Epub 2017 Nov 21.

PMID:
29112414
6.

Effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures.

Iijima M, Kohda N, Kawaguchi K, Muguruma T, Ohta M, Naganishi A, Murakami T, Mizoguchi I.

Eur J Orthod. 2015 Dec;37(6):665-70. doi: 10.1093/ejo/cjv013. Epub 2015 Mar 18.

PMID:
25788333
7.

Lignin-Based Thermoplastic Materials.

Wang C, Kelley SS, Venditti RA.

ChemSusChem. 2016 Apr 21;9(8):770-83. doi: 10.1002/cssc.201501531. Epub 2016 Apr 5. Review.

PMID:
27059111
8.

Description of plastic remains found in the stomach contents of the jumbo squid Dosidicus gigas landed in Ecuador during 2014.

Rosas-Luis R.

Mar Pollut Bull. 2016 Dec 15;113(1-2):302-305. doi: 10.1016/j.marpolbul.2016.09.060. Epub 2016 Oct 1.

PMID:
27707469
9.

A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer.

Puskas JE, Foreman-Orlowski EA, Lim GT, Porosky SE, Evancho-Chapman MM, Schmidt SP, El Fray M, Piatek M, Prowans P, Lovejoy K.

Biomaterials. 2010 Mar;31(9):2477-88. doi: 10.1016/j.biomaterials.2009.12.003. Epub 2009 Dec 24.

PMID:
20034664
10.

Nanoconfined β-sheets mechanically reinforce the supra-biomolecular network of robust squid Sucker Ring Teeth.

Guerette PA, Hoon S, Ding D, Amini S, Masic A, Ravi V, Venkatesh B, Weaver JC, Miserez A.

ACS Nano. 2014 Jul 22;8(7):7170-9.

PMID:
24911543
11.

Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications.

Vaz CM, Fossen M, van Tuil RF, de Graaf LA, Reis RL, Cunha AM.

J Biomed Mater Res A. 2003 Apr 1;65(1):60-70.

PMID:
12635155
12.

Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate.

Battegazzore D, Bocchini S, Nicola G, Martini E, Frache A.

Carbohydr Polym. 2015 Mar 30;119:78-84. doi: 10.1016/j.carbpol.2014.11.030. Epub 2014 Nov 20.

PMID:
25563947
13.

Jumbo squid beaks: inspiration for design of robust organic composites.

Miserez A, Li Y, Waite JH, Zok F.

Acta Biomater. 2007 Jan;3(1):139-49. Epub 2006 Nov 17.

PMID:
17113369
14.

Reversible stress softening of collagen based networks from the jumbo squid mantle (Dosidicus gigas).

Torres FG, Troncoso OP, Rivas ER, Gomez CG, Lopez D.

Mater Sci Eng C Mater Biol Appl. 2014 Apr 1;37:9-13. doi: 10.1016/j.msec.2013.12.028. Epub 2013 Dec 27.

PMID:
24582216
15.

Controlled and in situ target strengths of the jumbo squid Dosidicus gigas and identification of potential acoustic scattering sources.

Benoit-Bird KJ, Gilly WF, Au WW, Mate B.

J Acoust Soc Am. 2008 Mar;123(3):1318-28. doi: 10.1121/1.2832327.

PMID:
18345820
16.

Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers.

Kaneko T, Thi TH, Shi DJ, Akashi M.

Nat Mater. 2006 Dec;5(12):966-70. Epub 2006 Nov 26.

PMID:
17128261
17.

Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties.

Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J.

Int J Biol Macromol. 2016 Aug;89:575-81. doi: 10.1016/j.ijbiomac.2016.05.028. Epub 2016 May 10.

PMID:
27177458
18.

Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances.

Kohda N, Iijima M, Muguruma T, Brantley WA, Ahluwalia KS, Mizoguchi I.

Angle Orthod. 2013 May;83(3):476-83. doi: 10.2319/052512-432.1. Epub 2012 Oct 4.

PMID:
23035832
19.

Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins.

Jung H, Pena-Francesch A, Saadat A, Sebastian A, Kim DH, Hamilton RF, Albert I, Allen BD, Demirel MC.

Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6478-83. doi: 10.1073/pnas.1521645113. Epub 2016 May 24.

20.

High-performance elastomeric nanocomposites via solvent-exchange processing.

Liff SM, Kumar N, McKinley GH.

Nat Mater. 2007 Jan;6(1):76-83. Epub 2006 Dec 17.

PMID:
17173034

Supplemental Content

Support Center