Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots.

Roberts AM, Ward CC, Nomura DK.

Curr Opin Biotechnol. 2017 Feb;43:25-33. doi: 10.1016/j.copbio.2016.08.003. Epub 2016 Aug 26. Review.

2.

NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.

Ward CC, Kleinman JI, Nomura DK.

ACS Chem Biol. 2017 Jun 16;12(6):1478-1483. doi: 10.1021/acschembio.7b00125. Epub 2017 May 1.

PMID:
28445029
3.

Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery.

Berger AB, Vitorino PM, Bogyo M.

Am J Pharmacogenomics. 2004;4(6):371-81. Review.

PMID:
15651898
4.

A Global Map of Lipid-Binding Proteins and Their Ligandability in Cells.

Niphakis MJ, Lum KM, Cognetta AB 3rd, Correia BE, Ichu TA, Olucha J, Brown SJ, Kundu S, Piscitelli F, Rosen H, Cravatt BF.

Cell. 2015 Jun 18;161(7):1668-80. doi: 10.1016/j.cell.2015.05.045.

5.

Profiling the specific reactivity of the proteome with non-directed activity-based probes.

Adam GC, Cravatt BF, Sorensen EJ.

Chem Biol. 2001 Jan;8(1):81-95.

6.

Autoimmune profiling with protein microarrays in clinical applications.

Abel L, Kutschki S, Turewicz M, Eisenacher M, Stoutjesdijk J, Meyer HE, Woitalla D, May C.

Biochim Biophys Acta. 2014 May;1844(5):977-87. doi: 10.1016/j.bbapap.2014.02.023. Epub 2014 Mar 7. Review.

PMID:
24607371
7.

Screening for disease-markers and investigating drug effects by proteome profiling: can it meet expectations?

Gerner C.

Comb Chem High Throughput Screen. 2004 Feb;7(1):1-9. Review.

PMID:
14965256
8.

Proteome-wide covalent ligand discovery in native biological systems.

Backus KM, Correia BE, Lum KM, Forli S, Horning BD, González-Páez GE, Chatterjee S, Lanning BR, Teijaro JR, Olson AJ, Wolan DW, Cravatt BF.

Nature. 2016 Jun 23;534(7608):570-4. doi: 10.1038/nature18002. Epub 2016 Jun 15.

9.

Preparation of recombinant protein spotted arrays for proteome-wide identification of kinase targets.

Im H, Snyder M.

Curr Protoc Protein Sci. 2013 Apr;Chapter 27:Unit 27.4. doi: 10.1002/0471140864.ps2704s72.

10.

The unfoldomics decade: an update on intrinsically disordered proteins.

Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN.

BMC Genomics. 2008 Sep 16;9 Suppl 2:S1. doi: 10.1186/1471-2164-9-S2-S1.

11.

Targeted mass spectrometry approaches for protein biomarker verification.

Meng Z, Veenstra TD.

J Proteomics. 2011 Nov 18;74(12):2650-9. doi: 10.1016/j.jprot.2011.04.011. Epub 2011 Apr 21. Review.

PMID:
21540133
12.

Strategies for discovering and derisking covalent, irreversible enzyme inhibitors.

Johnson DS, Weerapana E, Cravatt BF.

Future Med Chem. 2010 Jun;2(6):949-64.

13.

[Development of antituberculous drugs: current status and future prospects].

Tomioka H, Namba K.

Kekkaku. 2006 Dec;81(12):753-74. Review. Japanese.

PMID:
17240921
14.

Protein microarray technology.

Templin MF, Stoll D, Schrenk M, Traub PC, Vöhringer CF, Joos TO.

Trends Biotechnol. 2002 Apr;20(4):160-6. Review.

PMID:
11906748
15.

Expanding chemogenomic space using chemoproteomics.

Jones LH.

Bioorg Med Chem. 2019 Jun 13. pii: S0968-0896(19)30658-3. doi: 10.1016/j.bmc.2019.06.022. [Epub ahead of print] Review.

PMID:
31221609
16.

Proteome-scale Binary Interactomics in Human Cells.

Lievens S, Van der Heyden J, Masschaele D, De Ceuninck L, Petta I, Gupta S, De Puysseleyr V, Vauthier V, Lemmens I, De Clercq DJ, Defever D, Vanderroost N, De Smet AS, Eyckerman S, Van Calenbergh S, Martens L, De Bosscher K, Libert C, Hill DE, Vidal M, Tavernier J.

Mol Cell Proteomics. 2016 Dec;15(12):3624-3639. Epub 2016 Nov 1.

17.

Technological advances for interrogating the human kinome.

Baharani A, Trost B, Kusalik A, Napper S.

Biochem Soc Trans. 2017 Feb 8;45(1):65-77. doi: 10.1042/BST20160163. Review.

PMID:
28202660
18.

Chemical biology approaches to probe the proteome.

Ovaa H, van Leeuwen F.

Chembiochem. 2008 Dec 15;9(18):2913-9. doi: 10.1002/cbic.200800454. Review.

PMID:
18972466
19.

Mapping Proteome-Wide Targets of Environmental Chemicals Using Reactivity-Based Chemoproteomic Platforms.

Medina-Cleghorn D, Bateman LA, Ford B, Heslin A, Fisher KJ, Dalvie ED, Nomura DK.

Chem Biol. 2015 Oct 22;22(10):1394-405. doi: 10.1016/j.chembiol.2015.09.008.

20.

Mapping proteome-wide interactions of reactive chemicals using chemoproteomic platforms.

Counihan JL, Ford B, Nomura DK.

Curr Opin Chem Biol. 2016 Feb;30:68-76. doi: 10.1016/j.cbpa.2015.11.007. Epub 2015 Nov 30. Review.

Supplemental Content

Support Center