Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism.

Caccia S, Di Lelio I, La Storia A, Marinelli A, Varricchio P, Franzetti E, Banyuls N, Tettamanti G, Casartelli M, Giordana B, Ferré J, Gigliotti S, Ercolini D, Pennacchio F.

Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9486-91. doi: 10.1073/pnas.1521741113. Epub 2016 Aug 9.

2.

Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus.

Crava CM, Jakubowska AK, Escriche B, Herrero S, Bel Y.

PLoS One. 2015 May 18;10(5):e0125991. doi: 10.1371/journal.pone.0125991. eCollection 2015.

3.

RNAi-mediated knockdown of a Spodoptera frugiperda trypsin-like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin.

Rodríguez-Cabrera L, Trujillo-Bacallao D, Borrás-Hidalgo O, Wright DJ, Ayra-Pardo C.

Environ Microbiol. 2010 Nov;12(11):2894-903. doi: 10.1111/j.1462-2920.2010.02259.x.

PMID:
20545748
4.

RNA interference of an antimicrobial peptide, gloverin, of the beet armyworm, Spodoptera exigua, enhances susceptibility to Bacillus thuringiensis.

Hwang J, Kim Y.

J Invertebr Pathol. 2011 Nov;108(3):194-200. doi: 10.1016/j.jip.2011.09.003. Epub 2011 Sep 8.

PMID:
21925182
5.

From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta.

Mason KL, Stepien TA, Blum JE, Holt JF, Labbe NH, Rush JS, Raffa KF, Handelsman J.

MBio. 2011 May 17;2(3):e00065-11. doi: 10.1128/mBio.00065-11. Print 2011.

6.

Larvicidal activities against agricultural pests of transgenic Escherichia coli expressing combinations of four genes from Bacillus thuringiensis.

Khasdan V, Sapojnik M, Zaritsky A, Horowitz AR, Boussiba S, Rippa M, Manasherob R, Ben-Dov E.

Arch Microbiol. 2007 Dec;188(6):643-53. Epub 2007 Jul 31.

PMID:
17665174
7.

Spodoptera frugiperda (J. E. Smith) Aminopeptidase N1 Is a Functional Receptor of the Bacillus thuringiensis Cry1Ca Toxin.

Gómez I, Rodríguez-Chamorro DE, Flores-Ramírez G, Grande R, Zúñiga F, Portugal FJ, Sánchez J, Pacheco S, Bravo A, Soberón M.

Appl Environ Microbiol. 2018 Aug 17;84(17). pii: e01089-18. doi: 10.1128/AEM.01089-18. Print 2018 Sep 1.

8.

Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut.

BenFarhat-Touzri D, Saadaoui M, Abdelkefi-Mesrati L, Saadaoui I, Azzouz H, Tounsi S.

J Invertebr Pathol. 2013 Feb;112(2):142-5. doi: 10.1016/j.jip.2012.11.007. Epub 2012 Dec 5.

PMID:
23220238
9.

Functional analysis of an immune gene of Spodoptera littoralis by RNAi.

Di Lelio I, Varricchio P, Di Prisco G, Marinelli A, Lasco V, Caccia S, Casartelli M, Giordana B, Rao R, Gigliotti S, Pennacchio F.

J Insect Physiol. 2014 May;64:90-7. doi: 10.1016/j.jinsphys.2014.03.008. Epub 2014 Mar 21.

PMID:
24662467
10.

Midgut bacteria required for Bacillus thuringiensis insecticidal activity.

Broderick NA, Raffa KF, Handelsman J.

Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15196-9. Epub 2006 Sep 27.

11.

Role of UPR pathway in defense response of Aedes aegypti against Cry11Aa toxin from Bacillus thuringiensis.

Bedoya-Pérez LP, Cancino-Rodezno A, Flores-Escobar B, Soberón M, Bravo A.

Int J Mol Sci. 2013 Apr 17;14(4):8467-78. doi: 10.3390/ijms14048467.

12.

Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor.

Rajagopal R, Sivakumar S, Agrawal N, Malhotra P, Bhatnagar RK.

J Biol Chem. 2002 Dec 6;277(49):46849-51. Epub 2002 Oct 10.

13.

Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes.

Herrero S, Gechev T, Bakker PL, Moar WJ, de Maagd RA.

BMC Genomics. 2005 Jun 24;6:96.

14.

RNA interference of cadherin gene expression in Spodoptera exigua reveals its significance as a specific Bt target.

Park Y, Kim Y.

J Invertebr Pathol. 2013 Nov;114(3):285-91. doi: 10.1016/j.jip.2013.09.006. Epub 2013 Sep 19.

PMID:
24055650
15.

Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua.

Vatanparast M, Kim Y.

PLoS One. 2017 Aug 11;12(8):e0183054. doi: 10.1371/journal.pone.0183054. eCollection 2017.

16.

Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua.

Hernández-Martínez P, Navarro-Cerrillo G, Caccia S, de Maagd RA, Moar WJ, Ferré J, Escriche B, Herrero S.

PLoS One. 2010 Sep 17;5(9). pii: e12795. doi: 10.1371/journal.pone.0012795.

17.

Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin.

Fang S, Wang L, Guo W, Zhang X, Peng D, Luo C, Yu Z, Sun M.

Appl Environ Microbiol. 2009 Aug;75(16):5237-43. doi: 10.1128/AEM.00532-09. Epub 2009 Jun 19.

18.

Bacillus thuringiensis: A story of a successful bioinsecticide.

Bravo A, Likitvivatanavong S, Gill SS, Soberón M.

Insect Biochem Mol Biol. 2011 Jul;41(7):423-31. doi: 10.1016/j.ibmb.2011.02.006. Epub 2011 Mar 2. Review.

19.

Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae.

Regev A, Keller M, Strizhov N, Sneh B, Prudovsky E, Chet I, Ginzberg I, Koncz-Kalman Z, Koncz C, Schell J, Zilberstein A.

Appl Environ Microbiol. 1996 Oct;62(10):3581-6.

Supplemental Content

Support Center