Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 81

1.

RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose.

Brown NA, Ries LN, Reis TF, Rajendran R, Corrêa Dos Santos RA, Ramage G, Riaño-Pachón DM, Goldman GH.

Biotechnol Biofuels. 2016 Jul 19;9:145. doi: 10.1186/s13068-016-0558-2. eCollection 2016.

2.

Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.

Borin GP, Sanchez CC, de Santana ES, Zanini GK, Dos Santos RAC, de Oliveira Pontes A, de Souza AT, Dal'Mas RMMTS, Riaño-Pachón DM, Goldman GH, Oliveira JVC.

BMC Genomics. 2017 Jun 30;18(1):501. doi: 10.1186/s12864-017-3857-5.

3.

Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface.

Grünbacher A, Throm T, Seidel C, Gutt B, Röhrig J, Strunk T, Vincze P, Walheim S, Schimmel T, Wenzel W, Fischer R.

PLoS One. 2014 Apr 10;9(4):e94546. doi: 10.1371/journal.pone.0094546. eCollection 2014.

5.

Role of Hydrophobins in Aspergillus fumigatus.

Valsecchi I, Dupres V, Stephen-Victor E, Guijarro JI, Gibbons J, Beau R, Bayry J, Coppee JY, Lafont F, Latgé JP, Beauvais A.

J Fungi (Basel). 2017 Dec 24;4(1). pii: E2. doi: 10.3390/jof4010002.

6.

The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.

de Souza WR, Maitan-Alfenas GP, de Gouvêa PF, Brown NA, Savoldi M, Battaglia E, Goldman MH, de Vries RP, Goldman GH.

Fungal Genet Biol. 2013 Nov;60:29-45. doi: 10.1016/j.fgb.2013.07.007. Epub 2013 Jul 26.

7.

Self-assembly of proteins into a three-dimensional multilayer system: investigation of the surface of the human fungal pathogen Aspergillus fumigatus.

Zykwinska A, Pihet M, Radji S, Bouchara JP, Cuenot S.

Biochim Biophys Acta. 2014 Jun;1844(6):1137-44. doi: 10.1016/j.bbapap.2014.03.001. Epub 2014 Mar 12.

PMID:
24631542
8.

Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse.

de Souza WR, de Gouvea PF, Savoldi M, Malavazi I, de Souza Bernardes LA, Goldman MHS, de Vries RP, de Castro Oliveira JV, Goldman GH.

Biotechnol Biofuels. 2011 Oct 18;4:40. doi: 10.1186/1754-6834-4-40.

9.

Aspergillus nidulans protein kinase A plays an important role in cellulase production.

de Assis LJ, Ries LN, Savoldi M, Dos Reis TF, Brown NA, Goldman GH.

Biotechnol Biofuels. 2015 Dec 18;8:213. doi: 10.1186/s13068-015-0401-1. eCollection 2015.

10.

Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities.

Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V.

Biotechnol Biofuels. 2015 Feb 8;8:16. doi: 10.1186/s13068-015-0200-8. eCollection 2015.

11.

High-yield production of hydrophobins RodA and RodB from Aspergillus fumigatus in Pichia pastoris.

Pedersen MH, Borodina I, Moresco JL, Svendsen WE, Frisvad JC, Søndergaard I.

Appl Microbiol Biotechnol. 2011 Jun;90(6):1923-32. doi: 10.1007/s00253-011-3235-1. Epub 2011 Apr 6.

PMID:
21468704
12.

Targeted metatranscriptomics of compost-derived consortia reveals a GH11 exerting an unusual exo-1,4-β-xylanase activity.

Mello BL, Alessi AM, Riaño-Pachón DM, deAzevedo ER, Guimarães FEG, Espirito Santo MC, McQueen-Mason S, Bruce NC, Polikarpov I.

Biotechnol Biofuels. 2017 Nov 2;10:254. doi: 10.1186/s13068-017-0944-4. eCollection 2017.

13.

The Aspergillus nidulans signalling mucin MsbA regulates starvation responses, adhesion and affects cellulase secretion in response to environmental cues.

Brown NA, Dos Reis TF, Goinski AB, Savoldi M, Menino J, Almeida MT, Rodrigues F, Goldman GH.

Mol Microbiol. 2014 Oct 8. doi: 10.1111/mmi.12820. [Epub ahead of print]

14.

Differential regulation and posttranslational processing of the class II hydrophobin genes from the biocontrol fungus Hypocrea atroviridis.

Mikus M, Hatvani L, Neuhof T, Komoń-Zelazowska M, Dieckmann R, Schwecke T, Druzhinina IS, von Döhren H, Kubicek CP.

Appl Environ Microbiol. 2009 May;75(10):3222-9. doi: 10.1128/AEM.01764-08. Epub 2009 Mar 27.

15.

RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in Aspergillus niger.

Pullan ST, Daly P, Delmas S, Ibbett R, Kokolski M, Neiteler A, van Munster JM, Wilson R, Blythe MJ, Gaddipati S, Tucker GA, Archer DB.

Fungal Biol Biotechnol. 2014 Nov 17;1(1):1-14. doi: 10.1186/s40694-014-0003-x.

16.

RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in Aspergillus niger.

Pullan ST, Daly P, Delmas S, Ibbett R, Kokolski M, Neiteler A, van Munster JM, Wilson R, Blythe MJ, Gaddipati S, Tucker GA, Archer DB.

Fungal Biol Biotechnol. 2014 Nov 17;1:3. doi: 10.1186/s40694-014-0003-x. eCollection 2014.

17.

Backbone and sidechain ¹H, ¹³C and ¹⁵N chemical shift assignments of the hydrophobin DewA from Aspergillus nidulans.

Morris VK, Kwan AH, Mackay JP, Sunde M.

Biomol NMR Assign. 2012 Apr;6(1):83-6. doi: 10.1007/s12104-011-9330-5. Epub 2011 Aug 4.

PMID:
21845363
18.

Lack of evidence for a role of hydrophobins in conferring surface hydrophobicity to conidia and hyphae of Botrytis cinerea.

Mosbach A, Leroch M, Mendgen KW, Hahn M.

BMC Microbiol. 2011 Jan 13;11:10. doi: 10.1186/1471-2180-11-10.

19.

The capability of endophytic fungi for production of hemicellulases and related enzymes.

Robl D, Delabona Pda S, Mergel CM, Rojas JD, Costa Pdos S, Pimentel IC, Vicente VA, da Cruz Pradella JG, Padilla G.

BMC Biotechnol. 2013 Oct 31;13:94. doi: 10.1186/1472-6750-13-94.

20.

Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse.

Manavalan T, Manavalan A, Thangavelu KP, Heese K.

J Proteomics. 2012 Dec 21;77:298-309. doi: 10.1016/j.jprot.2012.09.004. Epub 2012 Sep 20.

PMID:
23000217

Supplemental Content

Support Center