Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Terminal regions of β-catenin are critical for regulating its adhesion and transcription functions.

Dar MS, Singh P, Singh G, Jamwal G, Hussain SS, Rana A, Akhter Y, Monga SP, Dar MJ.

Biochim Biophys Acta. 2016 Sep;1863(9):2345-57. doi: 10.1016/j.bbamcr.2016.06.010. Epub 2016 Jun 29.

2.

Bryostatin 1 modulates beta-catenin subcellular localization and transcription activity through protein kinase D1 activation.

Jaggi M, Chauhan SC, Du C, Balaji KC.

Mol Cancer Ther. 2008 Sep;7(9):2703-12. doi: 10.1158/1535-7163.MCT-08-0119. Epub 2008 Sep 2. Erratum in: Mol Cancer Ther. 2009 May;8(5):1398.

3.

alphaE-catenin is not a significant regulator of beta-catenin signaling in the developing mammalian brain.

Lien WH, Klezovitch O, Null M, Vasioukhin V.

J Cell Sci. 2008 May 1;121(Pt 9):1357-62. doi: 10.1242/jcs.020537. Epub 2008 Apr 8.

4.

Distinct hydrophobic "patches" in the N- and C-tails of beta-catenin contribute to nuclear transport.

Sharma M, Jamieson C, Lui C, Henderson BR.

Exp Cell Res. 2016 Nov 1;348(2):132-145. doi: 10.1016/j.yexcr.2016.09.009. Epub 2016 Sep 19.

PMID:
27658570
5.

HuR represses Wnt/β-catenin-mediated transcriptional activity by promoting cytoplasmic localization of β-catenin.

Kim I, Hur J, Jeong S.

Biochem Biophys Res Commun. 2015 Jan 30;457(1):65-70. doi: 10.1016/j.bbrc.2014.12.052. Epub 2014 Dec 19.

PMID:
25534855
6.

alpha-Catenin overrides Src-dependent activation of beta-catenin oncogenic signaling.

Inge LJ, Rajasekaran SA, Wolle D, Barwe SP, Ryazantsev S, Ewing CM, Isaacs WB, Rajasekaran AK.

Mol Cancer Ther. 2008 Jun;7(6):1386-97. doi: 10.1158/1535-7163.MCT-07-2029.

7.

Dominant negative N-cadherin inhibits osteoclast differentiation by interfering with beta-catenin regulation of RANKL, independent of cell-cell adhesion.

Shin CS, Her SJ, Kim JA, Kim DH, Kim SW, Kim SY, Kim HS, Park KH, Kim JG, Kitazawa R, Cheng SL, Civitelli R.

J Bone Miner Res. 2005 Dec;20(12):2200-12. Epub 2005 Aug 8.

8.

Effects of cadmium on the sub-cellular localization of β-catenin and β-catenin-regulated gene expression in NRK-52E cells.

Edwards JR, Kolman K, Lamar PC, Chandar N, Fay MJ, Prozialeck WC.

Biometals. 2013 Feb;26(1):33-42. doi: 10.1007/s10534-012-9592-0. Epub 2012 Oct 19.

PMID:
23080431
9.

A positive role of cadherin in Wnt/β-catenin signalling during epithelial-mesenchymal transition.

Howard S, Deroo T, Fujita Y, Itasaki N.

PLoS One. 2011;6(8):e23899. doi: 10.1371/journal.pone.0023899. Epub 2011 Aug 31.

10.

Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin.

Yamazaki S, Yamamoto K, de Lanerolle P, Harata M.

Histochem Cell Biol. 2016 Apr;145(4):389-99. doi: 10.1007/s00418-016-1416-9. Epub 2016 Feb 22.

PMID:
26900020
12.

Chibby cooperates with 14-3-3 to regulate beta-catenin subcellular distribution and signaling activity.

Li FQ, Mofunanya A, Harris K, Takemaru K.

J Cell Biol. 2008 Jun 30;181(7):1141-54. doi: 10.1083/jcb.200709091. Epub 2008 Jun 23.

13.

Novel regulatory mechanism of canonical Wnt signaling by dopamine D2 receptor through direct interaction with beta-catenin.

Min C, Cho DI, Kwon KJ, Kim KS, Shin CY, Kim KM.

Mol Pharmacol. 2011 Jul;80(1):68-78. doi: 10.1124/mol.111.071340. Epub 2011 Apr 14.

PMID:
21493728
14.

Implications of targeted genomic disruption of β-catenin in BxPC-3 pancreatic adenocarcinoma cells.

Olsen PA, Solberg NT, Lund K, Vehus T, Gelazauskaite M, Wilson SR, Krauss S.

PLoS One. 2014 Dec 23;9(12):e115496. doi: 10.1371/journal.pone.0115496. eCollection 2014.

15.

FoxO3a nuclear localization and its association with β-catenin and Smads in IFN-α-treated hepatocellular carcinoma cell lines.

Ceballos MP, Parody JP, Quiroga AD, Casella ML, Francés DE, Larocca MC, Carnovale CE, Alvarez Mde L, Carrillo MC.

J Interferon Cytokine Res. 2014 Nov;34(11):858-69. doi: 10.1089/jir.2013.0124. Epub 2014 Jun 20.

16.

Beta-catenin modulates the level and transcriptional activity of Notch1/NICD through its direct interaction.

Jin YH, Kim H, Ki H, Yang I, Yang N, Lee KY, Kim N, Park HS, Kim K.

Biochim Biophys Acta. 2009 Feb;1793(2):290-9. doi: 10.1016/j.bbamcr.2008.10.002. Epub 2008 Oct 22.

17.

Glucose-induced β-catenin acetylation enhances Wnt signaling in cancer.

Chocarro-Calvo A, García-Martínez JM, Ardila-González S, De la Vieja A, García-Jiménez C.

Mol Cell. 2013 Feb 7;49(3):474-86. doi: 10.1016/j.molcel.2012.11.022. Epub 2012 Dec 27.

18.
19.

Identification of a unique loss-of-function mutation in IGF1R and a crosstalk between IGF1R and Wnt/β-catenin signaling pathways.

Jamwal G, Singh G, Dar MS, Singh P, Bano N, Syed SH, Sandhu P, Akhter Y, Monga SP, Dar MJ.

Biochim Biophys Acta Mol Cell Res. 2018 Jun;1865(6):920-931. doi: 10.1016/j.bbamcr.2018.03.013. Epub 2018 Apr 3.

20.

Flightless I homolog negatively regulates ChREBP activity in cancer cells.

Wu L, Chen H, Zhu Y, Meng J, Li Y, Li M, Yang D, Zhang P, Feng M, Tong X.

Int J Biochem Cell Biol. 2013 Nov;45(11):2688-97. doi: 10.1016/j.biocel.2013.09.004. Epub 2013 Sep 17.

PMID:
24055811

Supplemental Content

Support Center