Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 82

1.

Short-term Performance-based Error-augmentation versus Error-reduction Robotic Gait Training for Individuals with Chronic Stroke: A Pilot Study.

Kao PC, Srivastava S, Higginson JS, Agrawal SK, Scholz JP.

Phys Med Rehabil Int. 2015;2(9). pii: 1066. Epub 2015 Nov 12.

2.

Effect of robotic performance-based error-augmentation versus error-reduction training on the gait of healthy individuals.

Kao PC, Srivastava S, Agrawal SK, Scholz JP.

Gait Posture. 2013 Jan;37(1):113-20. doi: 10.1016/j.gaitpost.2012.06.025. Epub 2012 Jul 24.

3.

A pilot study on the feasibility of robot-aided leg motor training to facilitate active participation.

Krishnan C, Ranganathan R, Dhaher YY, Rymer WZ.

PLoS One. 2013 Oct 11;8(10):e77370. doi: 10.1371/journal.pone.0077370. eCollection 2013.

4.

Active robotic training improves locomotor function in a stroke survivor.

Krishnan C, Ranganathan R, Kantak SS, Dhaher YY, Rymer WZ.

J Neuroeng Rehabil. 2012 Aug 20;9:57. doi: 10.1186/1743-0003-9-57.

5.

Inducing self-selected human engagement in robotic locomotion training.

Collins SH, Jackson RW.

IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650488. doi: 10.1109/ICORR.2013.6650488.

PMID:
24187305
6.

Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern.

Neckel ND, Blonien N, Nichols D, Hidler J.

J Neuroeng Rehabil. 2008 Sep 1;5:19. doi: 10.1186/1743-0003-5-19.

7.

Prediction of gait recovery in spinal cord injured individuals trained with robotic gait orthosis.

Niu X, Varoqui D, Kindig M, Mirbagheri MM.

J Neuroeng Rehabil. 2014 Mar 24;11:42. doi: 10.1186/1743-0003-11-42.

8.

Error-augmentation gait training to improve gait symmetry in patients with non-traumatic lower limb amputation: A proof-of-concept study.

Kline PW, Murray AM, Miller MJ, Fields T, Christiansen CL.

Prosthet Orthot Int. 2019 Apr 24:309364619843777. doi: 10.1177/0309364619843777. [Epub ahead of print]

PMID:
31018771
9.

Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial.

Schück A, Labruyère R, Vallery H, Riener R, Duschau-Wicke A.

J Neuroeng Rehabil. 2012 May 31;9:31. doi: 10.1186/1743-0003-9-31.

10.

Robot assisted gait training with active leg exoskeleton (ALEX).

Banala SK, Kim SH, Agrawal SK, Scholz JP.

IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):2-8. doi: 10.1109/TNSRE.2008.2008280.

PMID:
19211317
11.

Effects of robotic guidance on the coordination of locomotion.

Moreno JC, Barroso F, Farina D, Gizzi L, Santos C, Molinari M, Pons JL.

J Neuroeng Rehabil. 2013 Jul 19;10:79. doi: 10.1186/1743-0003-10-79.

12.

Ankle training with a robotic device improves hemiparetic gait after a stroke.

Forrester LW, Roy A, Krebs HI, Macko RF.

Neurorehabil Neural Repair. 2011 May;25(4):369-77. doi: 10.1177/1545968310388291. Epub 2010 Nov 29.

13.

Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.

Marchal-Crespo L, Tsangaridis P, Obwegeser D, Maggioni S, Riener R.

Front Neurosci. 2019 Feb 19;13:61. doi: 10.3389/fnins.2019.00061. eCollection 2019.

14.

Gait training with partial body weight support during overground walking for individuals with chronic stroke: a pilot study.

Sousa CO, Barela JA, Prado-Medeiros CL, Salvini TF, Barela AM.

J Neuroeng Rehabil. 2011 Aug 24;8:48. doi: 10.1186/1743-0003-8-48.

15.

The use of body weight support on ground level: an alternative strategy for gait training of individuals with stroke.

Sousa CO, Barela JA, Prado-Medeiros CL, Salvini TF, Barela AM.

J Neuroeng Rehabil. 2009 Dec 1;6:43. doi: 10.1186/1743-0003-6-43.

16.

Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.

Kao PC, Lewis CL, Ferris DP.

J Neuroeng Rehabil. 2010 Jul 26;7:33. doi: 10.1186/1743-0003-7-33.

17.

Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task.

Marchal-Crespo L, Michels L, Jaeger L, López-Olóriz J, Riener R.

Front Neurosci. 2017 Sep 27;11:526. doi: 10.3389/fnins.2017.00526. eCollection 2017.

18.

A novel cable-driven robotic training improves locomotor function in individuals post-stroke.

Wu M, Landry JM, Yen SC, Schmit BD, Hornby TG, Rafferty M.

Conf Proc IEEE Eng Med Biol Soc. 2011;2011:8539-42. doi: 10.1109/IEMBS.2011.6092107.

19.

Short-term ankle motor performance with ankle robotics training in chronic hemiparetic stroke.

Roy A, Forrester LW, Macko RF.

J Rehabil Res Dev. 2011;48(4):417-29.

20.

A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy.

Chen G, Chan CK, Guo Z, Yu H.

Crit Rev Biomed Eng. 2013;41(4-5):343-63. Review.

PMID:
24941413

Supplemental Content

Support Center