Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

A β-mannan utilization locus in Bacteroides ovatus involves a GH36 α-galactosidase active on galactomannans.

Reddy SK, Bågenholm V, Pudlo NA, Bouraoui H, Koropatkin NM, Martens EC, Stålbrand H.

FEBS Lett. 2016 Jul;590(14):2106-18. doi: 10.1002/1873-3468.12250. Epub 2016 Jun 28.

2.

Galactomannan Catabolism Conferred by a Polysaccharide Utilization Locus of Bacteroides ovatus: ENZYME SYNERGY AND CRYSTAL STRUCTURE OF A β-MANNANASE.

Bågenholm V, Reddy SK, Bouraoui H, Morrill J, Kulcinskaja E, Bahr CM, Aurelius O, Rogers T, Xiao Y, Logan DT, Martens EC, Koropatkin NM, Stålbrand H.

J Biol Chem. 2017 Jan 6;292(1):229-243. doi: 10.1074/jbc.M116.746438. Epub 2016 Nov 21.

4.

β-mannanase (Man26A) and α-galactosidase (Aga27A) synergism - a key factor for the hydrolysis of galactomannan substrates.

Malgas S, van Dyk SJ, Pletschke BI.

Enzyme Microb Technol. 2015 Mar;70:1-8. doi: 10.1016/j.enzmictec.2014.12.007. Epub 2014 Dec 22.

PMID:
25659626
5.
6.
7.

Galactomannan Degrading Enzymes from the Mannan Utilization Gene Cluster of Alkaliphilic Bacillus sp. N16-5 and Their Synergy on Galactomannan Degradation.

Song Y, Sun W, Fan Y, Xue Y, Liu D, Ma C, Liu W, Mosher W, Luo X, Li Z, Ma W, Zhang T.

J Agric Food Chem. 2018 Oct 24;66(42):11055-11063. doi: 10.1021/acs.jafc.8b03878. Epub 2018 Oct 15.

PMID:
30351049
8.

A surface-exposed GH26 β-mannanase from Bacteroides ovatus: Structure, role, and phylogenetic analysis of BoMan26B.

Bågenholm V, Wiemann M, Reddy SK, Bhattacharya A, Rosengren A, Logan DT, Stålbrand H.

J Biol Chem. 2019 Jun 7;294(23):9100-9117. doi: 10.1074/jbc.RA118.007171. Epub 2019 Apr 18.

9.

Galactomannan hydrolysis and mannose metabolism in Cellvibrio mixtus.

Centeno MS, Guerreiro CI, Dias FM, Morland C, Tailford LE, Goyal A, Prates JA, Ferreira LM, Caldeira RM, Mongodin EF, Nelson KE, Gilbert HJ, Fontes CM.

FEMS Microbiol Lett. 2006 Aug;261(1):123-32.

10.

An alpha-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with beta-mannanase.

Wang H, Luo H, Li J, Bai Y, Huang H, Shi P, Fan Y, Yao B.

Bioresour Technol. 2010 Nov;101(21):8376-82. doi: 10.1016/j.biortech.2010.06.045. Epub 2010 Jun 29.

PMID:
20591661
11.

Fermentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics.

Zartl B, Silberbauer K, Loeppert R, Viernstein H, Praznik W, Mueller M.

Food Funct. 2018 Mar 1;9(3):1638-1646. doi: 10.1039/c7fo01887h. Epub 2018 Feb 21.

PMID:
29465736
12.
13.

Galactomannan degradation by thermophilic enzymes: a hot topic for biotechnological applications.

Aulitto M, Fusco S, Limauro D, Fiorentino G, Bartolucci S, Contursi P.

World J Microbiol Biotechnol. 2019 Jan 30;35(2):32. doi: 10.1007/s11274-019-2591-3. Review.

PMID:
30701316
14.

A thermophilic enzymatic cocktail for galactomannans degradation.

Aulitto M, Fusco FA, Fiorentino G, Bartolucci S, Contursi P, Limauro D.

Enzyme Microb Technol. 2018 Apr;111:7-11. doi: 10.1016/j.enzmictec.2017.12.008. Epub 2017 Dec 29.

PMID:
29421040
15.

Characterization of a novel GH36 α-galactosidase from Bacillus megaterium and its application in degradation of raffinose family oligosaccharides.

Huang Y, Zhang H, Ben P, Duan Y, Lu M, Li Z, Cui Z.

Int J Biol Macromol. 2018 Mar;108:98-104. doi: 10.1016/j.ijbiomac.2017.11.154. Epub 2017 Nov 26.

PMID:
29183739
16.

Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding.

Fredslund F, Hachem MA, Larsen RJ, Sørensen PG, Coutinho PM, Lo Leggio L, Svensson B.

J Mol Biol. 2011 Sep 23;412(3):466-80. doi: 10.1016/j.jmb.2011.07.057. Epub 2011 Jul 30.

PMID:
21827767
17.

A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase.

Malgas S, van Dyk JS, Pletschke BI.

World J Microbiol Biotechnol. 2015 Aug;31(8):1167-75. doi: 10.1007/s11274-015-1878-2. Epub 2015 May 31. Review.

PMID:
26026279
18.

Substrate specificities of Penicillium simplicissimum alpha-galactosidases.

Luonteri E, Tenkanen M, Viikari L.

Enzyme Microb Technol. 1998 Feb 15;22(3):192-8.

PMID:
9463945
19.

Recombinant production and characterization of six novel GH27 and GH36 α-galactosidases from Penicillium subrubescens and their synergism with a commercial mannanase during the hydrolysis of lignocellulosic biomass.

Coconi Linares N, Dilokpimol A, Stålbrand H, Mäkelä MR, de Vries RP.

Bioresour Technol. 2020 Jan;295:122258. doi: 10.1016/j.biortech.2019.122258. Epub 2019 Oct 11.

PMID:
31639625
20.

Effect of polysaccharide structure on mechanical and thermal properties of galactomannan-based films.

Mikkonen KS, Rita H, Helén H, Talja RA, Hyvönen L, Tenkanen M.

Biomacromolecules. 2007 Oct;8(10):3198-205. Epub 2007 Sep 21.

PMID:
17883276

Supplemental Content

Support Center