Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Scalable Production of Molybdenum Disulfide Based Biosensors.

Naylor CH, Kybert NJ, Schneier C, Xi J, Romero G, Saven JG, Liu R, Johnson AT.

ACS Nano. 2016 Jun 28;10(6):6173-9. doi: 10.1021/acsnano.6b02137. Epub 2016 Jun 15.

2.

An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor.

Majd SM, Salimi A, Ghasemi F.

Biosens Bioelectron. 2018 May 15;105:6-13. doi: 10.1016/j.bios.2018.01.009. Epub 2018 Jan 6.

PMID:
29331901
3.

Scalable production of highly sensitive nanosensors based on graphene functionalized with a designed G protein-coupled receptor.

Lerner MB, Matsunaga F, Han GH, Hong SJ, Xi J, Crook A, Perez-Aguilar JM, Park YW, Saven JG, Liu R, Johnson AT.

Nano Lett. 2014 May 14;14(5):2709-14. doi: 10.1021/nl5006349. Epub 2014 Apr 21.

4.

MoS₂ field-effect transistor for next-generation label-free biosensors.

Sarkar D, Liu W, Xie X, Anselmo AC, Mitragotri S, Banerjee K.

ACS Nano. 2014 Apr 22;8(4):3992-4003. doi: 10.1021/nn5009148. Epub 2014 Mar 12. Erratum in: ACS Nano. 2014 May 27;8(5):5367.

PMID:
24588742
5.

Molybdenum disulfide field-effect transistor biosensor for ultrasensitive detection of DNA by employing morpholino as probe.

Mei J, Li YT, Zhang H, Xiao MM, Ning Y, Zhang ZY, Zhang GJ.

Biosens Bioelectron. 2018 Jul 1;110:71-77. doi: 10.1016/j.bios.2018.03.043. Epub 2018 Mar 20.

PMID:
29602033
6.

Employing a Bifunctional Molybdate Precursor To Grow the Highly Crystalline MoS2 for High-Performance Field-Effect Transistors.

Tong SW, Medina H, Liao W, Wu J, Wu W, Chai J, Yang M, Abutaha A, Wang S, Zhu C, Hippalgaonkar K, Chi D.

ACS Appl Mater Interfaces. 2019 Apr 17;11(15):14239-14248. doi: 10.1021/acsami.9b01444. Epub 2019 Apr 5.

PMID:
30920198
7.

Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection.

Loo AH, Bonanni A, Ambrosi A, Pumera M.

Nanoscale. 2014 Oct 21;6(20):11971-5. doi: 10.1039/c4nr03795b. Epub 2014 Sep 1.

PMID:
25177907
8.

Conduction Mechanisms in CVD-Grown Monolayer MoS2 Transistors: From Variable-Range Hopping to Velocity Saturation.

He G, Ghosh K, Singisetti U, Ramamoorthy H, Somphonsane R, Bohra G, Matsunaga M, Higuchi A, Aoki N, Najmaei S, Gong Y, Zhang X, Vajtai R, Ajayan PM, Bird JP.

Nano Lett. 2015 Aug 12;15(8):5052-8. doi: 10.1021/acs.nanolett.5b01159. Epub 2015 Jul 1.

PMID:
26121164
9.

Wafer-Scale Integration of Highly Uniform and Scalable MoS2 Transistors.

Kim Y, Kim AR, Zhao G, Choi SY, Kang SC, Lim SK, Lee KE, Park J, Lee BH, Hahm MG, Kim DH, Yun J, Lee KH, Cho B.

ACS Appl Mater Interfaces. 2017 Oct 25;9(42):37146-37153. doi: 10.1021/acsami.7b10676. Epub 2017 Oct 16.

PMID:
28976735
10.

Probing the Field-Effect Transistor with Monolayer MoS2 Prepared by APCVD.

Han T, Liu H, Wang S, Chen S, Xie H, Yang K.

Nanomaterials (Basel). 2019 Aug 27;9(9). pii: E1209. doi: 10.3390/nano9091209.

11.

Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films.

Liu H, Si M, Najmaei S, Neal AT, Du Y, Ajayan PM, Lou J, Ye PD.

Nano Lett. 2013 Jun 12;13(6):2640-6. doi: 10.1021/nl400778q. Epub 2013 May 20.

PMID:
23679044
12.

Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2.

Kim IS, Sangwan VK, Jariwala D, Wood JD, Park S, Chen KS, Shi F, Ruiz-Zepeda F, Ponce A, Jose-Yacaman M, Dravid VP, Marks TJ, Hersam MC, Lauhon LJ.

ACS Nano. 2014 Oct 28;8(10):10551-8. doi: 10.1021/nn503988x. Epub 2014 Sep 22.

13.

Low-Voltage and High-Performance Multilayer MoS2 Field-Effect Transistors with Graphene Electrodes.

Singh AK, Hwang C, Eom J.

ACS Appl Mater Interfaces. 2016 Dec 21;8(50):34699-34705. doi: 10.1021/acsami.6b12217. Epub 2016 Dec 7.

PMID:
27998114
14.

Ambient effects on electrical characteristics of CVD-grown monolayer MoS2 field-effect transistors.

Ahn JH, Parkin WM, Naylor CH, Johnson ATC, Drndić M.

Sci Rep. 2017 Jun 22;7(1):4075. doi: 10.1038/s41598-017-04350-z.

15.

Surface charge transfer doping of monolayer molybdenum disulfide by black phosphorus quantum dots.

Wang W, Niu X, Qian H, Guan L, Zhao M, Ding X, Zhang S, Wang Y, Sha J.

Nanotechnology. 2016 Dec 16;27(50):505204. Epub 2016 Nov 14.

PMID:
27841165
16.

Impact of Contact on the Operation and Performance of Back-Gated Monolayer MoS2 Field-Effect-Transistors.

Liu W, Sarkar D, Kang J, Cao W, Banerjee K.

ACS Nano. 2015 Aug 25;9(8):7904-12. doi: 10.1021/nn506512j. Epub 2015 Aug 3.

PMID:
26039221
17.

Uniform Vapor-Pressure-Based Chemical Vapor Deposition Growth of MoS2 Using MoO3 Thin Film as a Precursor for Coevaporation.

Withanage SS, Kalita H, Chung HS, Roy T, Jung Y, Khondaker SI.

ACS Omega. 2018 Dec 31;3(12):18943-18949. doi: 10.1021/acsomega.8b02978. eCollection 2018 Dec 31.

18.

Wafer-Scale Synthesis of Reliable High-Mobility Molybdenum Disulfide Thin Films via Inhibitor-Utilizing Atomic Layer Deposition.

Jeon W, Cho Y, Jo S, Ahn JH, Jeong SJ.

Adv Mater. 2017 Dec;29(47). doi: 10.1002/adma.201703031. Epub 2017 Nov 2.

PMID:
29094458
19.

Scalable Production of Sensor Arrays Based on High-Mobility Hybrid Graphene Field Effect Transistors.

Gao Z, Kang H, Naylor CH, Streller F, Ducos P, Serrano MD, Ping J, Zauberman J, Rajesh, Carpick RW, Wang YJ, Park YW, Luo Z, Ren L, Johnson ATC.

ACS Appl Mater Interfaces. 2016 Oct 19;8(41):27546-27552. doi: 10.1021/acsami.6b09238. Epub 2016 Oct 7.

PMID:
27676459
20.

A Novel and Facile Route to Synthesize Atomic-Layered MoS2 Film for Large-Area Electronics.

Boandoh S, Choi SH, Park JH, Park SY, Bang S, Jeong MS, Lee JS, Kim HJ, Yang W, Choi JY, Kim SM, Kim KK.

Small. 2017 Oct;13(39). doi: 10.1002/smll.201701306. Epub 2017 Aug 22.

PMID:
28834243

Supplemental Content

Support Center