Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 201

1.

Neonatal diabetes caused by a homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensitivity markedly affect diabetes risk.

Vedovato N, Cliff E, Proks P, Poovazhagi V, Flanagan SE, Ellard S, Hattersley AT, Ashcroft FM.

Diabetologia. 2016 Jul;59(7):1430-1436. doi: 10.1007/s00125-016-3964-x. Epub 2016 Apr 27.

2.
3.

Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features.

Proks P, Antcliff JF, Lippiat J, Gloyn AL, Hattersley AT, Ashcroft FM.

Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17539-44. Epub 2004 Dec 6.

4.

A Kir6.2 mutation causing severe functional effects in vitro produces neonatal diabetes without the expected neurological complications.

Tammaro P, Flanagan SE, Zadek B, Srinivasan S, Woodhead H, Hameed S, Klimes I, Hattersley AT, Ellard S, Ashcroft FM.

Diabetologia. 2008 May;51(5):802-10. doi: 10.1007/s00125-008-0923-1. Epub 2008 Mar 12.

5.

Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel.

Hamming KS, Soliman D, Matemisz LC, Niazi O, Lang Y, Gloyn AL, Light PE.

Diabetes. 2009 Oct;58(10):2419-24. doi: 10.2337/db09-0143. Epub 2009 Jul 8.

6.

Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects.

Shimomura K, Girard CA, Proks P, Nazim J, Lippiat JD, Cerutti F, Lorini R, Ellard S, Hattersley AT, Barbetti F, Ashcroft FM.

Diabetes. 2006 Jun;55(6):1705-12. Erratum in: Diabetes. 2007 Mar;56(3):897. Hattersely, Andrew T [corrected to Hattersley, Andrew T].

7.

Mutations of the same conserved glutamate residue in NBD2 of the sulfonylurea receptor 1 subunit of the KATP channel can result in either hyperinsulinism or neonatal diabetes.

Männikkö R, Flanagan SE, Sim X, Segal D, Hussain K, Ellard S, Hattersley AT, Ashcroft FM.

Diabetes. 2011 Jun;60(6):1813-22. doi: 10.2337/db10-1583.

8.

The first clinical case of a mutation at residue K185 of Kir6.2 (KCNJ11): a major ATP-binding residue.

Shimomura K, de Nanclares GP, Foutinou C, Caimari M, Castaño L, Ashcroft FM.

Diabet Med. 2010 Feb;27(2):225-9. doi: 10.1111/j.1464-5491.2009.02901.x.

PMID:
20546268
9.

Functional analysis of six Kir6.2 (KCNJ11) mutations causing neonatal diabetes.

Girard CA, Shimomura K, Proks P, Absalom N, Castano L, Perez de Nanclares G, Ashcroft FM.

Pflugers Arch. 2006 Dec;453(3):323-32. Epub 2006 Sep 22.

PMID:
17021801
10.

An in-frame deletion in Kir6.2 (KCNJ11) causing neonatal diabetes reveals a site of interaction between Kir6.2 and SUR1.

Craig TJ, Shimomura K, Holl RW, Flanagan SE, Ellard S, Ashcroft FM.

J Clin Endocrinol Metab. 2009 Jul;94(7):2551-7. doi: 10.1210/jc.2009-0159. Epub 2009 Apr 7.

PMID:
19351728
11.

Functional analysis of two Kir6.2 (KCNJ11) mutations, K170T and E322K, causing neonatal diabetes.

Tarasov AI, Girard CA, Larkin B, Tammaro P, Flanagan SE, Ellard S, Ashcroft FM.

Diabetes Obes Metab. 2007 Nov;9 Suppl 2:46-55.

PMID:
17919178
12.

Relapsing diabetes can result from moderately activating mutations in KCNJ11.

Gloyn AL, Reimann F, Girard C, Edghill EL, Proks P, Pearson ER, Temple IK, Mackay DJ, Shield JP, Freedenberg D, Noyes K, Ellard S, Ashcroft FM, Gribble FM, Hattersley AT.

Hum Mol Genet. 2005 Apr 1;14(7):925-34. Epub 2005 Feb 17.

PMID:
15718250
13.

Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations.

Pearson ER, Flechtner I, Njølstad PR, Malecki MT, Flanagan SE, Larkin B, Ashcroft FM, Klimes I, Codner E, Iotova V, Slingerland AS, Shield J, Robert JJ, Holst JJ, Clark PM, Ellard S, Søvik O, Polak M, Hattersley AT; Neonatal Diabetes International Collaborative Group.

N Engl J Med. 2006 Aug 3;355(5):467-77.

14.

Compound heterozygous mutations in the SUR1 (ABCC 8) subunit of pancreatic K(ATP) channels cause neonatal diabetes by perturbing the coupling between Kir6.2 and SUR1 subunits.

Lin YW, Akrouh A, Hsu Y, Hughes N, Nichols CG, De León DD.

Channels (Austin). 2012 Mar-Apr;6(2):133-8. doi: 10.4161/chan.19980. Epub 2012 Mar 1.

15.

The G53D mutation in Kir6.2 (KCNJ11) is associated with neonatal diabetes and motor dysfunction in adulthood that is improved with sulfonylurea therapy.

Koster JC, Cadario F, Peruzzi C, Colombo C, Nichols CG, Barbetti F.

J Clin Endocrinol Metab. 2008 Mar;93(3):1054-61. Epub 2007 Dec 11.

16.

Congenital hyperinsulinism and glucose hypersensitivity in homozygous and heterozygous carriers of Kir6.2 (KCNJ11) mutation V290M mutation: K(ATP) channel inactivation mechanism and clinical management.

Loechner KJ, Akrouh A, Kurata HT, Dionisi-Vici C, Maiorana A, Pizzoferro M, Rufini V, de Ville de Goyet J, Colombo C, Barbetti F, Koster JC, Nichols CG.

Diabetes. 2011 Jan;60(1):209-17. doi: 10.2337/db10-0731. Epub 2010 Oct 27.

17.

A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes.

Proks P, Arnold AL, Bruining J, Girard C, Flanagan SE, Larkin B, Colclough K, Hattersley AT, Ashcroft FM, Ellard S.

Hum Mol Genet. 2006 Jun 1;15(11):1793-800. Epub 2006 Apr 13.

PMID:
16613899
18.

An ATP-binding mutation (G334D) in KCNJ11 is associated with a sulfonylurea-insensitive form of developmental delay, epilepsy, and neonatal diabetes.

Masia R, Koster JC, Tumini S, Chiarelli F, Colombo C, Nichols CG, Barbetti F.

Diabetes. 2007 Feb;56(2):328-36.

19.

Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes.

Babiker T, Vedovato N, Patel K, Thomas N, Finn R, Männikkö R, Chakera AJ, Flanagan SE, Shepherd MH, Ellard S, Ashcroft FM, Hattersley AT.

Diabetologia. 2016 Jun;59(6):1162-6. doi: 10.1007/s00125-016-3921-8. Epub 2016 Mar 31.

20.

Supplemental Content

Support Center